【題目】如圖,在四棱錐中,四邊形是等腰梯形,,,,三角形是等邊三角形,平面平面,分別為、的中點.

1)求證:平面平面

2)若,,求的值.

【答案】1)見解析;(2.

【解析】

1)利用面面垂直的性質(zhì)定理得出平面,可得出,再推導(dǎo)出,利用線面垂直的判定定理可得出平面,再利用面面垂直的判定定理可證得結(jié)論成立;

2)記邊上的高為,邊上的高為,計算出的值,并計算出的值,再由可求得的值.

1)因為平面平面,平面平面,平面,所以平面

又因為平面,所以,

連接,因為、分別為的中點,所以.

因為,所以.

又因為,所以,

所以,所以.

又因為,所以.

,所以平面.

又因為平面,所以平面平面;

2)記邊上的高為,邊上的高為,則,

在等腰梯形中易知,故,

因為,所以,

所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐的底面為邊長為2的菱形,平面,,,為棱上一點,且.

1)求證:;

2)求二面角的余弦值;

3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)某地區(qū)氣象水文部門長期統(tǒng)計,可知該地區(qū)每年夏季有小洪水的概率為0.25,有大洪水的概率為0.05.

1)從該地區(qū)抽取的年水文資料中發(fā)現(xiàn),恰好3年無洪水事件的概率與恰好4年有洪水事件的概率相等,求的值;

2)今年夏季該地區(qū)某工地有許多大型設(shè)備,遇到大洪水時要損失60000元,遇到小洪水時要損失20000.為保護設(shè)備,有以下3種方案:

方案1:修建保護圍墻,建設(shè)費為3000元,但圍墻只能防小洪水.

方案2:修建保護大壩,建設(shè)費為7000元,能夠防大洪水.

方案3:不采取措施.

試比較哪一種方案好,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線,如圖將分別繞原點逆時針旋轉(zhuǎn),,得到曲線,,.以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系.

1)分別寫出曲線的極坐標(biāo)方程;

2)設(shè)兩點,兩點(其中均不與原點重合),若四邊形的面積為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】桂林漓江主要景點有象鼻山、伏波山、疊彩山、蘆笛巖、七星巖、九馬畫山,小張一家人隨機從這6個景點中選取2個進行游玩,則小張一家人不去七星巖和疊彩山的概率為( .

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】每年的臺風(fēng)都對泉州地區(qū)的漁業(yè)造成較大的經(jīng)濟損失.某保險公司為此開發(fā)了針對漁船的險種,并將投保的漁船分為III兩類,兩類漁船的比例如圖所示.經(jīng)統(tǒng)計,2019I,II兩類漁船的臺風(fēng)遭損率分別為2020年初,在修復(fù)遭損船只的基礎(chǔ)上,對I類漁船中的進一步改造.保險公司預(yù)估這些經(jīng)過改造的漁船2020年的臺風(fēng)遭損率將降為,而其他漁船的臺風(fēng)遭損率不變.假設(shè)投保的漁船不變,則下列敘述中正確的是(

A.2019年投保的漁船的臺風(fēng)遭損率為

B.2019年所有因臺風(fēng)遭損的投保的漁船中,I類漁船所占的比例不超過

C.預(yù)估2020I類漁船的臺風(fēng)遭損率會小于II類漁船的臺風(fēng)遭損率的兩倍

D.預(yù)估2020年經(jīng)過進一步改造的漁船因臺風(fēng)遭損的數(shù)量少于II類漁船因臺風(fēng)遭損的數(shù)量

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)科院為試驗冬季晝夜溫差對反季節(jié)大豆新品種發(fā)芽的影響,對溫差與發(fā)芽率之間的關(guān)系進行統(tǒng)計分析研究,記錄了6天晝夜溫差與實驗室中種子發(fā)芽數(shù)的數(shù)據(jù)如下:

日期

11

12

13

14

15

16

溫差(攝氏度)

10

11

12

13

8

9

發(fā)芽數(shù)(粒)

26

27

30

32

21

24

他們確定的方案是先從這6組數(shù)據(jù)中選出2組,用剩下的4組數(shù)據(jù)求回歸方程,再用選取的兩組數(shù)據(jù)進行檢驗.

1)求選取的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;

2)若由線性回歸方程得到的估計數(shù)據(jù)與實際數(shù)據(jù)的誤差不超過1粒,則認(rèn)為得到的線性回歸方程是可靠的.請根據(jù)12,3,45日的數(shù)據(jù)求出關(guān)于的線性回歸方程(保留兩位小數(shù)),并檢驗此方程是否可靠.

參考公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是給定的平面,設(shè)不在內(nèi)的任意兩點M,N所在的直線為l,則下列命題正確的是(

A.內(nèi)存在直線與直線l異面

B.內(nèi)存在直線與直線l相交

C.內(nèi)存在直線與直線l平行

D.存在過直線l的平面與平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】時代悄然來臨,為了研究中國手機市場現(xiàn)狀,中國信通院統(tǒng)計了2019年手機市場每月出貨量以及與2018年當(dāng)月同比增長的情況,得到如下統(tǒng)計圖,根據(jù)該統(tǒng)計圖,下列說法錯誤的是(

A.2019年全年手機市場出貨量中,5月份出貨量最多

B.2019年下半年手機市場各月份出貨量相對于上半年各月份波動小

C.2019年全年手機市場總出貨量低于2018年全年總出貨量

D.201812月的手機出貨量低于當(dāng)年8月手機出貨量

查看答案和解析>>

同步練習(xí)冊答案