【題目】根據(jù)某地區(qū)氣象水文部門長期統(tǒng)計,可知該地區(qū)每年夏季有小洪水的概率為0.25,有大洪水的概率為0.05.

1)從該地區(qū)抽取的年水文資料中發(fā)現(xiàn),恰好3年無洪水事件的概率與恰好4年有洪水事件的概率相等,求的值;

2)今年夏季該地區(qū)某工地有許多大型設備,遇到大洪水時要損失60000元,遇到小洪水時要損失20000.為保護設備,有以下3種方案:

方案1:修建保護圍墻,建設費為3000元,但圍墻只能防小洪水.

方案2:修建保護大壩,建設費為7000元,能夠防大洪水.

方案3:不采取措施.

試比較哪一種方案好,請說明理由.

【答案】1;(2)選擇方案1好.

【解析】

1)利用獨立性重復試驗二項分布概率計算公式列等量關系求的值;

2)求出三種方案的期望值,對比選出期望值最小的方案.

1)∵該地區(qū)每年夏季有小洪水的概率為0.25,有大洪水的概率為0.05

即該地區(qū)每年夏季無洪水的概率為,

∵該地區(qū)抽取的年水文資料中發(fā)現(xiàn),恰好3年無洪水事件的概率與恰好4年有洪水事件的概率相等,且符合獨立性重復試驗二項分布,

,

解得

;

2)設方案1、方案2和方案3的損失為隨機變量為,分布列分別為:

方案1

,,

3000

60000

0.95

0.05

,

方案2

7000

1

方案3

,

0

20000

60000

0.7

0.25

0.05

,

∴方案1的期望值最小,選擇方案1好.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在一旅游區(qū)內原有兩條互相垂直且相交于點O的道路l1l2,一自然景觀的邊界近似為圓形,其半徑約為1千米,景觀的中心Cl1,l2的距離相等,點C到點O的距離約為10千米.現(xiàn)擬新建四條游覽道路方便游客參觀,具體方案:在線段OC上取一點P,新建一條道路OP,并過點P新建兩條與圓C相切的道路PMPNM,N為切點),同時過點P新建一條與OP垂直的道路ABA,B分別在l1,l2上).為促進沿途旅游經濟,新建道路長度之和越大越好,求新建道路長度之和的最大值.(所有道路寬度忽略不計)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面,,且,.

1)證明:.

2)若,試在棱上確定一點,使與平面所成角的正弦值為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方體ABCDA1B1C1D1中,M,N,P分別是C1D1,BC,A1D1的中點,有下列四個結論:

APCM是異面直線;②APCM,DD1相交于一點;③MNBD1;

MN∥平面BB1D1D

其中所有正確結論的編號是( 。

A.①④B.②④C.①④D.②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,,,,.過直線的平面分別交棱E,F兩點.

1)求證:;

2)若直線與平面所成角為,且,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列的數(shù)列的首項,前n項和為,若數(shù)列滿足:對任意正整數(shù)n,k,當時,總成立,則稱數(shù)列是“數(shù)列”

1)若是公比為2的等比數(shù)列,試判斷是否為“”數(shù)列?

2)若是公差為d的等差數(shù)列,且是“數(shù)列”,求實數(shù)d的值;

3)若數(shù)列既是“”,又是“”,求證:數(shù)列為等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調性;

2)當時,判斷并說明函數(shù)的零點個數(shù).若函數(shù)所有零點均在區(qū)間內,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,四邊形是等腰梯形,,,,三角形是等邊三角形,平面平面、分別為的中點.

1)求證:平面平面;

2)若,,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直四棱柱中,四邊形為梯形, ,且.過三點的平面記為, 的交點為.

(I)證明: 的中點;

(II)求此四棱柱被平面所分成上下兩部分的體積之比.

查看答案和解析>>

同步練習冊答案