【題目】如圖,已知扇形是一個(gè)觀光區(qū)的平面示意圖,其中扇形半徑為10米,,為了便于游客觀光和旅游,提出以下兩種設(shè)計(jì)方案:
(1)如圖1,擬在觀光區(qū)內(nèi)規(guī)劃一條三角形形狀的道路,道路的一個(gè)頂點(diǎn)在弧上,另一頂點(diǎn)在半徑上,且,求周長(zhǎng)的最大值;
(2)如圖2,擬在觀光區(qū)內(nèi)規(guī)劃一個(gè)三角形區(qū)域種植花卉,三角形花圃的一個(gè)頂點(diǎn)在弧上,另兩個(gè)頂點(diǎn)在半徑上,且,,求花圃面積的最大值.
【答案】(1)米(2)
【解析】
(1)要求周長(zhǎng)的最大值,即求的最小值,設(shè),在中由正弦定理求出,利用三角恒等變換,將轉(zhuǎn)化為正弦型三角函數(shù),即可求出最值;或由,利用余弦定理結(jié)合基本不等式,即可求出的最值;
(2)中的面積與(1)中面積相等,利用余弦定理結(jié)合基本不等式,即可求出的最大值;或過(guò)作于,設(shè),,通過(guò),求出,進(jìn)而求出,求出面積關(guān)于的三角函數(shù)關(guān)系,利用三角恒等變換,以及正弦函數(shù)的圖像求出其最值.
(1)解法1:∵,,∴,
又,設(shè),,
在中由正弦定理知
,
∴,,
∴周長(zhǎng)為
,
,∴時(shí),周長(zhǎng)最大值米,
解法2:在中,因?yàn)?/span>,
,,∴,
由余弦定理知: ,
∴,
∴,
∴,當(dāng)且僅當(dāng),等號(hào)成立;
(2)解法1:因?yàn)椋?/span>2)中的面積與(1)中面積相等,
而在中,因?yàn)?/span>, ,,
∴,由余弦定理知: ,
∴,
∴,當(dāng)且僅當(dāng),等號(hào)成立;
∴,
答:花圃面積最大值,最大值時(shí).
解法2:過(guò)作于,∵,,
易知四邊形為矩形,連結(jié),設(shè),,
∴,
在中,
∴
,時(shí),最大值為.
答:花圃面積最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的右焦點(diǎn)為,是橢圓上一點(diǎn),軸,.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線與橢圓交于、兩點(diǎn),線段的中點(diǎn)為,為坐標(biāo)原點(diǎn),且,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求曲線在處的切線方程;
(2)若函數(shù)在區(qū)間上有極值,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】新能源汽車是戰(zhàn)略性新興行業(yè)之一,發(fā)展新能源汽車是中國(guó)從汽車大國(guó)邁向汽車強(qiáng)國(guó)的必由之路,某汽車企業(yè)為了適應(yīng)市場(chǎng)需求引進(jìn)了新能源汽車生產(chǎn)設(shè)備,2019年該企業(yè)新能源汽車的銷售量逐月平穩(wěn)增長(zhǎng),1,2,3月份的銷售量分別為1.2千臺(tái),1.4千臺(tái),1.8千臺(tái),為估計(jì)以后每個(gè)月的銷售量,以這三個(gè)月的銷售量為依據(jù),用一個(gè)函數(shù)模擬汽車的月銷售量(單位:千臺(tái))和月份之間的函數(shù)關(guān)系,有以下兩個(gè)函數(shù)模型可供選擇:
①;②,如果4月份的銷售量為2.3千臺(tái),選擇一個(gè)效果較好的函數(shù)進(jìn)行模擬,則估計(jì)5月份的銷售量為________千臺(tái).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圓C與x軸相切于點(diǎn)T(2,0),與y軸的正半軸相交于A,B兩點(diǎn)(A在B的上方),且AB=3.
(1)求圓C的方程;
(2)直線BT上是否存在點(diǎn)P滿足PA2+PB2+PT2=12,若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;
(3)如果圓C上存在E,F(xiàn)兩點(diǎn),使得射線AB平分∠EAF,求證:直線EF的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市場(chǎng)調(diào)查發(fā)現(xiàn),某種產(chǎn)品在投放市場(chǎng)的30天中,其銷售價(jià)格(元)和時(shí)間(天)()的關(guān)系如圖所示
(1)寫出銷售價(jià)格(元)和時(shí)間(天)的函數(shù)解析式;
(2)若日銷售量(件)與時(shí)間(天)的函數(shù)關(guān)系是(,),求該商品的日銷售金額(元)與時(shí)間(天)的函數(shù)解析式;
(3)問(wèn)該產(chǎn)品投放市場(chǎng)第幾天時(shí),日銷售金額最高?最高值為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4―4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系xOy中,直線l1的參數(shù)方程為(t為參數(shù)),直線l2的參數(shù)方程為.設(shè)l1與l2的交點(diǎn)為P,當(dāng)k變化時(shí),P的軌跡為曲線C.
(1)寫出C的普通方程;
(2)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,設(shè)l3:ρ(cosθ+sinθ) =0,M為l3與C的交點(diǎn),求M的極徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(已知數(shù)列{}滿足:,為數(shù)列的前項(xiàng)和.
(1) 若{}是遞增數(shù)列,且成等差數(shù)列,求的值;
(2) 若,且{}是遞增數(shù)列,{}是遞減數(shù)列,求數(shù)列{}的通項(xiàng)公式;
(3) 若,對(duì)于給定的正整數(shù),是否存在一個(gè)滿足條件的數(shù)列,使得,如果存在,給出一個(gè)滿足條件的數(shù)列,如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)命題:
函數(shù)的最大值為1;
“,”的否定是“”;
若為銳角三角形,則有;
“”是“函數(shù)在區(qū)間內(nèi)單調(diào)遞增”的充分必要條件.
其中錯(cuò)誤的個(gè)數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com