【題目】如圖,圓C與x軸相切于點T(2,0),與y軸的正半軸相交于A,B兩點(A在B的上方),且AB=3.

(1)求圓C的方程;

(2)直線BT上是否存在點P滿足PA2+PB2+PT2=12,若存在,求出點P的坐標,若不存在,請說明理由;

(3)如果圓C上存在E,F(xiàn)兩點,使得射線AB平分∠EAF,求證:直線EF的斜率為定值.

【答案】1;(2)點P坐標為.3)見解析.

【解析】

1)求出圓C的半徑為,即得圓C的方程;(2)先求出直線BT的方程為x+2y-2=0.

設(shè)P(2-2y,y),根據(jù)PA2+PB2+PT2=12 求出點P的坐標;(3)由題得,EFBC,再求EF的斜率.

1)由題得,所以圓C的半徑為.

所以圓C的方程為.

(2)中,令x=0,y=1y=4.

所以A(0,4),B(0,1).

所以直線BT的方程為x+2y-2=0.

設(shè)P(2-2y,y),因為PA2+PB2+PT2=12,

所以,

由題得

因為,

所以方程無解.

所以不存在這樣的點P.

(3)由題得,

所以,

所以.

所以直線EF的斜率為定值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐P﹣ABCD中,底面ABCD是菱形,∠BAD=60°,AB=PB=PD=2,PA=
(Ⅰ)求證:BD⊥PC;
(Ⅱ)若E是PA的中點,求三棱錐P﹣BCE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】A市某機構(gòu)為了調(diào)查該市市民對我國申辦2034年足球世界杯的態(tài)度,隨機選取了140位市民進行調(diào)查,調(diào)查結(jié)果統(tǒng)計如下:

支持

不支持

總計

男性市民

60

女性市民

50

合計

70

140

(I)根據(jù)已知數(shù)據(jù),把表格數(shù)據(jù)填寫完整;

(II)利用(1)完成的表格數(shù)據(jù)回答下列問題:

(。能否在犯錯誤的概率不超過0.001的前提下認為性別與支持申辦足球世界杯有關(guān);

(ⅱ)已知在被調(diào)查的支持申辦足球世界杯的男性市民中有5位退休老人,其中2位是教師,現(xiàn)從這5位退休老人中隨機抽取3人,求至多有1位老師的概率。

附:,其中

0.050

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: + =1(a>b>0)的左、右焦點分別為F1 , F2 , O為坐標原點,點P(1, )在橢圓上,連接PF1交y軸于點Q,點Q滿足 = .直線l不過原點O且不平行于坐標軸,l與橢圓C有兩個交點A,B. (Ⅰ)求橢圓C的標準方程;
(Ⅱ)已知點M( ,0),若直線l過橢圓C的右焦點F2 , 證明: 為定值;
(Ⅲ)若直線l過點(0,2),設(shè)N為橢圓C上一點,且滿足 + ,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩名籃球運動員分別在各自不同的5場比賽所得籃板球數(shù)的莖葉圖如圖所示,已知兩名運動員在各自5場比賽所得平均籃板球數(shù)均為10.

(1)求x,y的值;

(2)求甲乙所得籃板球數(shù)的方差,并指出哪位運動員籃板球水平更穩(wěn)定;

(3)教練員要對甲乙兩名運動員籃板球的整體水平進行評估.現(xiàn)在甲乙各自的5場比賽中各選一場進行評估,則兩名運動員所得籃板球之和小于18的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知函數(shù)f(x)是定義在R上的偶函數(shù),f(x+1)為奇函數(shù),f(0)=0,當x∈(0,1]時,f(x)=log2x,則在區(qū)間(8,9)內(nèi)滿足方f(x)程f(x)+2=f( )的實數(shù)x為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,AB⊥平面BB1C1C,∠BCC1= ,AB=BB1=2,BC=1,D為CC1中點.
(1)求證:DB1⊥平面ABD;
(2)求二面角A﹣B1D﹣A1的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an},{bn}滿足 , ,其中n∈N+ . (I)求證:數(shù)列{bn}是等差數(shù)列,并求出數(shù)列{an}的通項公式;
(II)設(shè) ,求數(shù)列{cncn+2}的前n項和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在底面為正方形的四棱錐S﹣ABCD中,SA=SB=SC=SD,異面直線AD與SC所成的角為60°,AB=2.則四棱錐S﹣ABCD的外接球的表面積為(
A.6π
B.8π
C.12π
D.16π

查看答案和解析>>

同步練習(xí)冊答案