【題目】共享單車是城市慢行系統(tǒng)的一種模式創(chuàng)新,對于解決民眾出行“最后一公里”的問題特別見效,由于停取方便、租用價格低廉,各色共享單車受到人們的熱捧.某自行車廠為共享單車公司生產(chǎn)新樣式的單車,已知生產(chǎn)新樣式單車的固定成本為20000元,每生產(chǎn)一件新樣式單車需要增加投入100元.根據(jù)初步測算,自行車廠的總收益(單位:元)滿足分段函數(shù),其中 是新樣式單車的月產(chǎn)量(單位:件),利潤總收益總成本.
(1)試將自行車廠的利潤元表示為月產(chǎn)量的函數(shù);
(2)當月產(chǎn)量為多少件時自行車廠的利潤最大?最大利潤是多少?
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)對一切實數(shù)都有 成立,且.
(1)求的值;
(2)求的解析式;
(3)已知,設:當時,不等式 恒成立;Q:當時,是單調(diào)函數(shù)。如果滿足成立的的集合記為,滿足Q成立的的集合記為,求A∩(CRB)(為全集).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=5x+x-2,g(x)=log5x+x-2的零點分別為x1,x2,則x1+x2的值為________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的定義域是.
(1)判斷在上的單調(diào)性,并證明;
(2)若不等式對任意恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】過點作拋物線的兩條切線, 切點分別為, .
(1) 證明: 為定值;
(2) 記△的外接圓的圓心為點, 點是拋物線的焦點, 對任意實數(shù), 試判斷以為直徑的圓是否恒過點? 并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】分形幾何學是數(shù)學家伯努瓦·曼德爾布羅在世紀年代創(chuàng)立的一門新的數(shù)學學科,它的創(chuàng)立為解決傳統(tǒng)科學眾多領域的難題提供了全新的思路.按照如圖所示的分形規(guī)律可得如圖乙所示的一個樹形圖:
若記圖乙中第行白圈的個數(shù)為,則__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有一種新型的洗衣液,去污速度特別快.已知每投放k(1≤k≤4,且k∈R)個單位的洗衣液在一定量水的洗衣機中,它在水中釋放的濃度y(克/升)隨著時間x(分鐘)變化的函數(shù)關系式近似為y=k·f(x),其中f(x)=若多次投放,則某一時刻水中的洗衣液濃度為每次投放的洗衣液在相應時刻所釋放的濃度之和.根據(jù)經(jīng)驗,當水中洗衣液的濃度不低于4(克/升)時,它才能起到有效去污的作用.
(1)若只投放一次k個單位的洗衣液,兩分鐘時水中洗衣液的濃度為3(克/升),求k的值;
(2)若只投放一次4個單位的洗衣液,則有效去污時間可達幾分鐘?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率,左頂點為.
(1)求橢圓的方程;
(2)已知為坐標原點, 是橢圓上的兩點,連接的直線平行交軸于點,證明: 成等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C:x2+y2-8y+12=0,直線l經(jīng)過點D(-2,0),且斜率為k.
(1)求以線段CD為直徑的圓E的方程.
(2)若直線l與圓C相離,求k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com