【題目】已知函數(shù)對一切實(shí)數(shù)都有 成立,且.
(1)求的值;
(2)求的解析式;
(3)已知,設(shè):當(dāng)時,不等式 恒成立;Q:當(dāng)時,是單調(diào)函數(shù)。如果滿足成立的的集合記為,滿足Q成立的的集合記為,求A∩(CRB)(為全集).
【答案】(1);(2);(3).
【解析】試題分析:(1)對抽象函數(shù)滿足的函數(shù)值關(guān)系的理解和把握是解決該問題的關(guān)鍵,對自變量適當(dāng)?shù)馁x值可以解決該問題,結(jié)合已知條件可以賦求出;(2)在(1)基礎(chǔ)上賦值可以實(shí)現(xiàn)求解的解析式的問題;(3)利用(2)中求得的函數(shù)的解析式,結(jié)合恒成立問題的求解策略,即轉(zhuǎn)化為相應(yīng)的二次函數(shù)最值問題求出集合,利用二次函數(shù)的單調(diào)性求解策略求出集合.
試題解析:(1)令x=﹣1,y=1,則由已知f(0)﹣f(1)=﹣1(﹣1+2+1)
∴f(0)=﹣2
(2)令y=0,則f(x)﹣f(0)=x(x+1)
又∵f(0)=﹣2,∴f(x)=x2+x﹣2
(3)不等式f(x)+3<2x+a即x2+x﹣2+3<2x+a
也就是x2﹣x+1<a.由于當(dāng)時,,
又x2﹣x+1=恒成立,
故A={a|a≥1},g(x)=x2+x﹣2﹣ax=x2+(1﹣a)x﹣2 對稱軸x=,
又g(x)在[﹣2,2]上是單調(diào)函數(shù),故有,或,
∴B={a|a≤﹣3,或a≥5},CRB={a|﹣3<a<5},∴A∩CRB={a|1≤a<5}.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,兩種坐標(biāo)系中的長度單位相同,已知曲線的極坐標(biāo)方程為.
(1)求的直角坐標(biāo)方程;
(2)直線(為參數(shù))與曲線交于兩點(diǎn),與軸交于,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《中華人民共和國個人所得稅》規(guī)定,公民月工資、薪金所得不超過3500元的部分不納稅,超過3500元的部分為全月納稅所得額,此項(xiàng)稅款按下表分段累計(jì)計(jì)算:
已知張先生的月工資、薪金所得為10000元,問他當(dāng)月應(yīng)繳納多少個人所得稅?
設(shè)王先生的月工資、薪金所得為元,當(dāng)月應(yīng)繳納個人所得稅為元,寫出與的函數(shù)關(guān)系式;
(3)已知王先生一月份應(yīng)繳納個人所得稅為303元,那么他當(dāng)月的個工資、薪金所得為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)所示,E為矩形ABCD的邊AD上一點(diǎn),動點(diǎn)P、Q同時從點(diǎn)B出發(fā),點(diǎn)P以1cm/秒的速度沿折線BE-ED-DC運(yùn)動到點(diǎn)C時停止,點(diǎn)Q以2cm/秒的速度沿BC運(yùn)動到點(diǎn)C時停止.設(shè)P、Q同時出發(fā)t秒時,△BPQ的面積為ycm2.已知y與t的函數(shù)關(guān)系圖象如圖(2)(其中曲線OG為拋物線的一部分,其余各部分均為線段),則下列結(jié)論:①;②當(dāng)時, ;③;④當(dāng)秒時, ∽;⑤當(dāng)的面積為時,時間的值是或;其中正確的結(jié)論是( )
A. ①⑤ B. ②⑤ C. ②③ D. ②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,圓、橢圓均經(jīng)過點(diǎn)M,圓的圓心為,橢圓的兩焦點(diǎn)分別為.
(Ⅰ)分別求圓和橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過作直線與圓交于、兩點(diǎn),試探究是否為定值?若是定值,求出該定值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高職院校進(jìn)行自主招生文化素質(zhì)考試,考試內(nèi)容為語文、數(shù)學(xué)、英語三科,總分為200分.現(xiàn)從上線的考生中隨機(jī)抽取20人,將其成績用莖葉圖記錄如下:
男 | 女 | |||||||||||
15 | 6 | |||||||||||
5 | 4 | 16 | 3 | 5 | 8 | |||||||
8 | 2 | 17 | 2 | 3 | 6 | 8 | 8 | 8 | ||||
6 | 5 | 18 | 5 | 7 | ||||||||
19 | 2 | 3 |
(Ⅰ)計(jì)算上線考生中抽取的男生成績的方差;(結(jié)果精確到小數(shù)點(diǎn)后一位)
(Ⅱ)從上述莖葉圖180分以上的考生中任選2人作為考生代表出席座談會,求所選考生恰為一男一女的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)滿足f(logax)=·(x-)(其中a>0且a≠1).
(1)求函數(shù)f(x)的解析式,并判斷其奇偶性和單調(diào)性;
(2)當(dāng)x∈(-∞,2)時,f(x)-4的值恒為負(fù)數(shù),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】共享單車是城市慢行系統(tǒng)的一種模式創(chuàng)新,對于解決民眾出行“最后一公里”的問題特別見效,由于停取方便、租用價格低廉,各色共享單車受到人們的熱捧.某自行車廠為共享單車公司生產(chǎn)新樣式的單車,已知生產(chǎn)新樣式單車的固定成本為20000元,每生產(chǎn)一件新樣式單車需要增加投入100元.根據(jù)初步測算,自行車廠的總收益(單位:元)滿足分段函數(shù),其中 是新樣式單車的月產(chǎn)量(單位:件),利潤總收益總成本.
(1)試將自行車廠的利潤元表示為月產(chǎn)量的函數(shù);
(2)當(dāng)月產(chǎn)量為多少件時自行車廠的利潤最大?最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com