【題目】《中華人民共和國個人所得稅》規(guī)定,公民月工資、薪金所得不超過3500元的部分不納稅,超過3500元的部分為全月納稅所得額,此項稅款按下表分段累計計算:

已知張先生的月工資、薪金所得為10000元,問他當月應(yīng)繳納多少個人所得稅?

設(shè)王先生的月工資、薪金所得為元,當月應(yīng)繳納個人所得稅為元,寫出的函數(shù)關(guān)系式;

(3)已知王先生一月份應(yīng)繳納個人所得稅為303元,那么他當月的個工資、薪金所得為多少?

【答案】(1)745(2)(3)7580

【解析】試題分析:1根據(jù)題意, 元是免稅的, 部分收的稅, 部分收的稅, 部分收的稅。

(2)寫出個人所得稅y元與薪金x元的關(guān)系,顯然要分

幾段寫解析式。

3)當 時,y=0, ,, 時, ,所以個人所得稅為303元,故必有,代入f(x)= =303,解方程可得。

試題解析:(1)趙先生應(yīng)交稅為

2的函數(shù)關(guān)系式為:

3李先生一月份繳納個人所得稅為303元,故必有,

從而

解得:

所以,李先生當月的工資、薪金所得為7580

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中,,都是邊長為2的等邊三角形,設(shè)在底面的射影為.

(1)求證:中點;

(2)證明:;

(3)求點到面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】經(jīng)過原點的直線與橢圓交于兩點,點為橢圓上不同于的一點,直線的斜率均存在,且直線的斜率之積為.

(1)求橢圓的離心率;

(2)設(shè)分別為橢圓的左、右焦點,斜率為的直線經(jīng)過橢圓的右焦點,且與橢圓交于兩點.若點在以為直徑的圓內(nèi)部,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著網(wǎng)絡(luò)的發(fā)展,人們可以在網(wǎng)絡(luò)上購物、玩游戲、聊天、導(dǎo)航等,所以人們對上網(wǎng)流量的需求越來越大。某電信運營商推出一款新的“流量包”套餐.為了調(diào)查不同年齡的人是否愿意選擇此款“流量包”套餐,隨機抽取50個用戶按年齡分組進行訪談,統(tǒng)計結(jié)果如下表.

組號

年齡

訪談人數(shù)

愿意使用

1

[20,30)

5

5

2

[30.40)

10

10

3

[40.50)

15

12

4

[50.60)

14

8

5

[60,70)

6

2

(1)若在第2、3、4組愿意選擇此款“流量包”套餐的人中,用分層抽樣的方法抽取15人,則各組應(yīng)分別抽取多少人?

(2)若從第5組的被調(diào)查者訪談人中隨機選取2人進行追蹤調(diào)查,求2人中至少有1人愿意選擇此款“流量包”套餐的概率.

(3)按以上統(tǒng)計數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷以50歲為分界點,能否在犯錯誤不超過1%的前提下認為是否愿意選擇此款“流量包”套餐與人的年齡有關(guān);

/table>

參考公式:,其中.

年齡不低于50歲的人數(shù)

年齡低于50歲的人數(shù)

合計

愿意使用的人數(shù)

不愿意使用的人數(shù)

合計

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某漁場有一邊長為20m的正三角形湖面ABC(如圖所示),計劃筑一條筆直的堤壩DE將水面分成面積相等的兩部分,以便進行兩類水產(chǎn)品養(yǎng)殖試驗(DAB上,EAC上).

(1)為了節(jié)約開支,堤壩應(yīng)盡可能短,請問該如何設(shè)計?堤壩最短為多少?

(2)將DE設(shè)計為景觀路線,堤壩應(yīng)盡可能長,請問又該如何設(shè)計?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=是奇函數(shù),且f(2)=.

(1)求實數(shù)mn的值;

(2)判斷函數(shù)f(x)在(-∞,0)上的單調(diào)性,并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)對一切實數(shù)都有 成立,且.

(1)求的值;

(2)求的解析式;

(3)已知,設(shè):當時,不等式 恒成立;Q:當時,是單調(diào)函數(shù)。如果滿足成立的的集合記為,滿足Q成立的的集合記為,求A∩(CRB)(為全集).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)以“綠色出行”為宗旨開展“共享單車”業(yè)務(wù).該地區(qū)某高級中學一興趣小組由20名高二級學生和15名高一級學生組成,現(xiàn)采用分層抽樣的方法抽取7人,組成一個體驗小組去市場體驗“共享單車”的使用.問:

(Ⅰ)應(yīng)從該興趣小組中抽取高一級和高二級的學生各多少人;

(Ⅱ)已知該地區(qū)有, 兩種型號的“共享單車”,在市場體驗中,該體驗小組的高二級學生都租型車,高一級學生都租型車.

(1)如果從組內(nèi)隨機抽取3人,求抽取的3人中至少有2人在市場體驗過程中租型車的概率;

(2)已知該地區(qū)型車每小時的租金為1元, 型車每小時的租金為1.2元,設(shè)為從體驗小組內(nèi)隨機抽取3人得到的每小時租金之和,求的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的定義域是.

(1)判斷上的單調(diào)性,并證明;

(2)若不等式對任意恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案