在數(shù)列中,, 且.
(1)求,的值;
(2)證明:數(shù)列是等比數(shù)列,并求的通項(xiàng)公式;
(3)求數(shù)列的前項(xiàng)和.
(1),.
(2)的通項(xiàng)公式為.
(3)
.
解析試題分析:(1)解:∵, 且,
∴,
. 2分
(2)證明:
∵,
∴數(shù)列是首項(xiàng)為,公比為的等比數(shù)列.
∴,即,
∴的通項(xiàng)公式為. 8分
(3)∵的通項(xiàng)公式為,
∴
. 12分
考點(diǎn):數(shù)列的遞推公式,數(shù)列的通項(xiàng)公式,等差數(shù)列、等比數(shù)列的證明,“分組求和法”。
點(diǎn)評(píng):中檔題,首先根據(jù)遞推公式,確定得到的表達(dá)式。進(jìn)一步確定數(shù)列的通項(xiàng)公式。 “分組求和法”“裂項(xiàng)相消法”“錯(cuò)位相減法”是高考常?疾榈臄(shù)列求和方法。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的相鄰兩項(xiàng),是關(guān)于方程的兩根,且.
(1)求證:數(shù)列是等比數(shù)列;
(2)求數(shù)列的前項(xiàng)和;
(3)設(shè)函數(shù),若對(duì)任意的都成立,求實(shí)數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前n項(xiàng)和為構(gòu)成數(shù)列,數(shù)列的前n項(xiàng)和構(gòu)成數(shù)列.
若,則
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知等差數(shù)列的前項(xiàng)和滿足,。
(Ⅰ)求的通項(xiàng)公式;
(Ⅱ)求數(shù)列的前項(xiàng)和。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列滿足:且.(1)求數(shù)列的前三項(xiàng);(2)是否存在一個(gè)實(shí)數(shù),使數(shù)列為等差數(shù)列?若存在,求出的值;若不存在,說明理由;(3)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
函數(shù),數(shù)列的前n項(xiàng)和,且同時(shí)滿足:
① 不等式 ≤ 0的解集有且只有一個(gè)元素;
② 在定義域內(nèi)存在,使得不等式成立.
(1) 求函數(shù)的表達(dá)式;
(2) 求數(shù)列的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)(1,2)是函數(shù)的圖像上一點(diǎn),數(shù)列的前n項(xiàng)和.
(1)求數(shù)列的通項(xiàng)公式;
(2)將數(shù)列前30項(xiàng)中的第3項(xiàng),第6項(xiàng),…,第3k項(xiàng)刪去,求數(shù)列前30項(xiàng)中剩余項(xiàng)的和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的各項(xiàng)均為正數(shù),為其前項(xiàng)和,且對(duì)任意的,有.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com