已知數(shù)列的各項(xiàng)均為正數(shù),為其前項(xiàng)和,且對任意的,有.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和

(1)(2)

解析試題分析:(1)由已知得,
∴當(dāng)時(shí),;    
,即
∴當(dāng)時(shí),;
∴數(shù)列為等比數(shù)列,且公比;                                   ……4分
又當(dāng)時(shí),,即,∴;
.                                                            ……8分
(2)∵,
,                          ……10分
的前項(xiàng)和
.         ……12分
考點(diǎn):本小題主要考查等比數(shù)列的判定和應(yīng)用以及裂項(xiàng)法求和.
點(diǎn)評:判定等差數(shù)列或等比數(shù)列時(shí),不要忘記驗(yàn)證是否符合;裂項(xiàng)法是求和的主要方法之一,要正確裂項(xiàng),準(zhǔn)確計(jì)算.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在數(shù)列中, 
(1)求,的值;
(2)證明:數(shù)列是等比數(shù)列,并求的通項(xiàng)公式;
(3)求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的首項(xiàng),且N*),數(shù)列的前項(xiàng)和。
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),證明:當(dāng)且僅當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直角的三邊長,滿足
(1)在之間插入2011個(gè)數(shù),使這2013個(gè)數(shù)構(gòu)成以為首項(xiàng)的等差數(shù)列,且它們的和為,求的最小值;
(2)已知均為正整數(shù),且成等差數(shù)列,將滿足條件的三角形的面積從小到大排成一列,且,求滿足不等式的所有的值;
(3)已知成等比數(shù)列,若數(shù)列滿足,證明:數(shù)列中的任意連續(xù)三項(xiàng)為邊長均可以構(gòu)成直角三角形,且是正整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),已知數(shù)列是公差為2的等差數(shù)列,且.
(Ⅰ)求數(shù)列的通項(xiàng)公式; 
(Ⅱ)當(dāng)時(shí),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
已知數(shù)列的前項(xiàng)和為,且 N.
(1) 求數(shù)列的通項(xiàng)公式;
(2)若是三個(gè)互不相等的正整數(shù),且成等差數(shù)列,試判斷
是否成等比數(shù)列?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
在數(shù)列中,為常數(shù),,且成公比不等
于1的等比數(shù)列.
(Ⅰ)求的值;
(Ⅱ)設(shè),求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知等差數(shù)列{}的公差,它的前n項(xiàng)和為,若,且成等比數(shù)列,
(Ⅰ)求數(shù)列{}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{}的前n項(xiàng)和為,求證:。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知首項(xiàng)為正數(shù)的等差數(shù)列{an}的前n項(xiàng)和為Sn,若a1 006和a1 007是方程x2-2 012x-2 011=0的兩根,則使Sn>0成立的正整數(shù)n的最大值是(   ).

A.1006 B.1007 C.2011 D.2012 

查看答案和解析>>

同步練習(xí)冊答案