設(shè)A、B分別為橢圓=1(a>b>0)的左、右頂點(diǎn),橢圓長半軸的長等于焦距,且直線x=4是它的右準(zhǔn)線.
(1)求橢圓的方程;
(2)設(shè)P為橢圓右準(zhǔn)線上不同于點(diǎn)(4,0)的任意一點(diǎn),若直線BP與橢圓相交于兩點(diǎn)B、N,求證:∠NAP為銳角.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第十一章第3課時練習(xí)卷(解析版) 題型:填空題
已知(1+ax)(1+x)5的展開式中x2的系數(shù)為5,則a=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第8課時練習(xí)卷(解析版) 題型:填空題
已知雙曲線=1(a>0,b>0)與拋物線y2=8x有一個公共的焦點(diǎn)F,且兩曲線的一個交點(diǎn)為P,若PF=5,則雙曲線的漸近線方程為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第7課時練習(xí)卷(解析版) 題型:解答題
已知橢圓=1(a>b>0)的離心率e=,連結(jié)橢圓的四個頂點(diǎn)得到的菱形的面積為4.
(1)求橢圓的方程;
(2)設(shè)直線l與橢圓相交于不同的兩點(diǎn)A,B.已知點(diǎn)A的坐標(biāo)為(-a,0).若|AB|=,求直線l的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第7課時練習(xí)卷(解析版) 題型:解答題
已知直線l經(jīng)過點(diǎn)(1,0)且一個方向向量d=(1,1).橢圓C:=1(m>1)的左焦點(diǎn)為F1.若直線l與橢圓C交于A,B兩點(diǎn),滿足·=0,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第7課時練習(xí)卷(解析版) 題型:填空題
已知F是橢圓C的一個焦點(diǎn),B是短軸的一個端點(diǎn),線段BF的延長線交C于點(diǎn)D,且=2,則C的離心率為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第6課時練習(xí)卷(解析版) 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,橢圓C:=1(a>b>0)的離心率為,以原點(diǎn)為圓心,橢圓C的短半軸長為半徑的圓與直線x-y+2=0相切.
(1)求橢圓C的方程;
(2)已知點(diǎn)P(0,1),Q(0,2).設(shè)M、N是橢圓C上關(guān)于y軸對稱的不同兩點(diǎn),直線PM與QN相交于點(diǎn)T,求證:點(diǎn)T在橢圓C上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第5課時練習(xí)卷(解析版) 題型:解答題
已知以點(diǎn)C(t∈R,t≠0)為圓心的圓與x軸交于點(diǎn)O、A,與y軸交于點(diǎn)O、B,其中O為原點(diǎn).
(1)求證:△AOB的面積為定值;
(2)設(shè)直線2x+y-4=0與圓C交于點(diǎn)M、N,若|OM|=|ON|,求圓C的方程;
(3)在(2)的條件下,設(shè)P、Q分別是直線l:x+y+2=0和圓C的動點(diǎn),求|PB|+|PQ|的最小值及此時點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第4課時練習(xí)卷(解析版) 題型:解答題
已知t∈R,圓C:x2+y2-2tx-2t2y+4t-4=0.
(1)若圓C的圓心在直線x-y+2=0上,求圓C的方程;
(2)圓C是否過定點(diǎn)?如果過定點(diǎn),求出定點(diǎn)的坐標(biāo);如果不過定點(diǎn),說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com