log2x<-1的解集是
 
考點:指、對數(shù)不等式的解法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用對數(shù)函數(shù)y=log2x是增函數(shù),并且log22=1,利用單調(diào)性得到真數(shù)之間的關(guān)系.
解答: 解:因為函數(shù)y=log2x是增函數(shù),并且log2
1
2
=-1,
所以由log2x<-1,得到x<
1
2
;
又真數(shù)大于0,
所以log2x<-1的解集為(0,
1
2
);
故答案為:(0,
1
2
);
點評:本題考查了對數(shù)不等式的解法;只要利用對數(shù)函數(shù)的單調(diào)性得到真數(shù)的關(guān)系,同時不能忽略真數(shù)本身要大于0.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的奇函數(shù),且當x<0時,f(x)=x(2-x),求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方體ABCD-A1B1C1D1中,E是棱AB上的動點,則直線A1D與直線C1E所成的角等于( 。
A、60°B、90°
C、30°D、隨點E的位置而變化

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若A是定直線l外的一定點,則過點A且與l相切的圓的圓心軌跡是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1+a2+a3+…+an=n-an(n∈N*).
(1)求a1,a2,a3的值;
(2)求證:數(shù)列{an-1}是等比數(shù)列;
(3)設(shè)bn=(2-n)(an-1)(n∈N*),如果對任意n∈N*,都有bn
t
5
,求正整數(shù)t的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標系xOy中,若曲線y=ax2+
b
x
(a,b為常數(shù))在點P(2,-5)處的切線與直線7x+2y+3=0平行,則a+b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:log2
4
4
…4
n
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

終邊落在x軸的負半軸的角α的集合是
 
,終邊在第一、第三象限的角平分線上的角β的集合
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在下列關(guān)于點P,直線l、m與平面α、β的命題中,正確的是(  )
A、若m⊥α,l⊥m,則l∥α
B、若l、m是異面直線,m?α,m∥β,l?β,l∥α,則α∥β
C、若α⊥β,α∩β=m,P∈α,P∈l,且l⊥m,則l⊥β
D、若α⊥β且l⊥β,m⊥l,則m⊥α

查看答案和解析>>

同步練習(xí)冊答案