【題目】從①前項(xiàng)和,②,③且,這三個(gè)條件中任選一個(gè),補(bǔ)充到下面的問(wèn)題中,并完成解答.
在數(shù)列中,,_______,其中.
(Ⅰ)求的通項(xiàng)公式;
(Ⅱ)若成等比數(shù)列,其中,且,求的最小值.
【答案】選擇①:(Ⅰ);(Ⅱ)5.
選擇②:(Ⅰ);(Ⅱ)6.
選擇③:(Ⅰ);(Ⅱ)5.
【解析】
(Ⅰ)選擇①,由求得的值,再由可求得數(shù)列的通項(xiàng)公式;
選擇②,可知數(shù)列是以為公差的等差數(shù)列,進(jìn)而可求得數(shù)列的通項(xiàng)公式;
選擇③,可知數(shù)列是等差數(shù)列,求出公差的值,進(jìn)而可求得數(shù)列的通項(xiàng)公式;
(Ⅱ)由可得出關(guān)于的表達(dá)式,進(jìn)而可求得的最小值.
選擇①:(Ⅰ)當(dāng)時(shí),由,得.
當(dāng)時(shí),由題意,得,所以.
經(jīng)檢驗(yàn),符合上式,所以;
(Ⅱ)由、、成等比數(shù)列,得,即.
化簡(jiǎn),得,
因?yàn)?/span>、是大于的正整數(shù),且,所以當(dāng)時(shí),有最小值.
選擇②:(Ⅰ)因?yàn)?/span>,所以.
所以數(shù)列是公差的等差數(shù)列.
所以;
(Ⅱ)由、、成等比數(shù)列,得,即.
化簡(jiǎn),得,
因?yàn)?/span>、是大于的正整數(shù),且,所以當(dāng)時(shí),取到最小值;
選擇③:(Ⅰ)由,得,所以數(shù)列是等差數(shù)列,
設(shè)等差數(shù)列的公差為,又因?yàn)?/span>,,所以.
所以;
(Ⅱ) 因?yàn)?/span>、、成等比數(shù)列,所以,即.
化簡(jiǎn),得,
因?yàn)?/span>、是大于的正整數(shù),且,所以當(dāng)時(shí),有最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】冠狀病毒是一個(gè)大型病毒家族,已知可引起感冒以及中東呼吸綜合征(MERS)和嚴(yán)重急性呼吸綜合征(SARS)等較嚴(yán)重疾病.而今年出現(xiàn)在湖北武漢的新型冠狀病毒(nCoV)是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株.人感染了新型冠狀病毒后常見體征有呼吸道癥狀發(fā)熱咳嗽氣促和呼吸困難等.在較嚴(yán)重病例中,感染可導(dǎo)致肺炎嚴(yán)重急性呼吸綜合征腎衰竭,甚至死亡.某醫(yī)院為篩查冠狀病毒,需要檢驗(yàn)血液是否為陽(yáng)性,現(xiàn)有份血液樣本,有以下兩種檢驗(yàn)方式:
方式一:逐份檢驗(yàn),則需要檢驗(yàn)n次.
方式二:混合檢驗(yàn),將其中且k≥2)份血液樣本分別取樣混合在一起檢驗(yàn).若檢驗(yàn)結(jié)果為陰性,這k份的血液全為陰性,因而這k份血液樣本只要檢驗(yàn)一次就夠了,如果檢驗(yàn)結(jié)果為陽(yáng)性,為了明確這k份血液究竟哪幾份為陽(yáng)性,就要對(duì)這k份再逐份檢驗(yàn),此時(shí)這k份血液的檢驗(yàn)次數(shù)總共為k+1.
假設(shè)在接受檢驗(yàn)的血液樣本中,每份樣本的檢驗(yàn)結(jié)果是陽(yáng)性還是陰性都是獨(dú)立的,且每份樣本是陽(yáng)性結(jié)果的概率為p(0<p<1).現(xiàn)取其中且k≥2)份血液樣本,記采用逐份檢驗(yàn),方式,樣本需要檢驗(yàn)的總次數(shù)為,采用混合檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為.
(1)若,試求p關(guān)于k的函數(shù)關(guān)系式p=f(k).
(2)若p與干擾素計(jì)量相關(guān),其中2)是不同的正實(shí)數(shù),滿足x1=1且.
(i)求證:數(shù)列為等比數(shù)列;
(ii)當(dāng)時(shí)采用混合檢驗(yàn)方式可以使得樣本需要檢驗(yàn)的總次數(shù)的期望值比逐份檢驗(yàn)的總次數(shù)的期望值更少,求k的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某省確定從2021年開始,高考采用“”的模式,取消文理分科,即“3”包括語(yǔ)文、數(shù)學(xué)、外語(yǔ),為必考科目;“1”表示從物理、歷史中任選一門;“2”則是從生物、化學(xué)、地理、政治中選擇兩門,共計(jì)六門考試科目.某高中從高一年級(jí)2000名學(xué)生(其中女生900人)中,采用分層抽樣的方法抽取名學(xué)生進(jìn)行調(diào)查.
(1)已知抽取的名學(xué)生中含男生110人,求的值及抽取到的女生人數(shù);
(2)學(xué)校計(jì)劃在高二上學(xué)期開設(shè)選修中的“物理”和“歷史”兩個(gè)科目,為了了解學(xué)生對(duì)這兩個(gè)科目的選課情況,對(duì)在(1)的條件下抽取到的名學(xué)生進(jìn)行問(wèn)卷調(diào)杳(假定每名學(xué)生在這兩個(gè)科目中必須洗擇一個(gè)科目且只能選擇一個(gè)科目).下表是根據(jù)調(diào)查結(jié)果得到的列聯(lián)表,請(qǐng)將列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為選擇科目與性別有關(guān)?說(shuō)明你的理由;
性別 | 選擇物理 | 選擇歷史 | 總計(jì) |
男生 | 50 | ||
女生 | 30 | ||
總計(jì) |
(3)在(2)的條件下,從抽取的選擇“物理”的學(xué)生中按分層抽樣抽取6人,再?gòu)倪@6名學(xué)生中抽取2人,對(duì)“物理”的選課意向作深入了解,求2人中至少有1名女生的概率.
附:,其中.
0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中.
(1)若曲線在點(diǎn)處的切線與直線平行,求的方程;
(2)若,函數(shù)在上為增函數(shù),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年,國(guó)家逐步推行全新的高考制度.新高考不再分文理科,某省采用3+3模式,其中語(yǔ)文、數(shù)學(xué)、外語(yǔ)三科為必考科目,滿分各150分,另外考生還要依據(jù)想考取的高校及專業(yè)的要求,結(jié)合自己的興趣愛好等因素,在思想政治、歷史、地理、物理、化學(xué)、生物6門科目中自選3門參加考試(6選3),每科目滿分100分.為了應(yīng)對(duì)新高考,某高中從高一年級(jí)1000名學(xué)生(其中男生550人,女生450人)中,采用分層抽樣的方法從中抽取名學(xué)生進(jìn)行調(diào)查.
(1)已知抽取的名學(xué)生中含男生55人,求的值;
(2)學(xué)校計(jì)劃在高一上學(xué)期開設(shè)選修中的“物理”和“地理”兩個(gè)科目,為了了解學(xué)生對(duì)這兩個(gè)科目的選課情況,對(duì)在(1)的條件下抽取到的名學(xué)生進(jìn)行問(wèn)卷調(diào)查(假定每名學(xué)生在這兩個(gè)科目中必須選擇一個(gè)科目且只能選擇一個(gè)科目),下表是根據(jù)調(diào)查結(jié)果得到的列聯(lián)表. 請(qǐng)將列聯(lián)表補(bǔ)充完整,并判斷是否有 99%的把握認(rèn)為選擇科目與性別有關(guān)?說(shuō)明你的理由;
(3)在抽取到的女生中按(2)中的選課情況進(jìn)行分層抽樣,從中抽出9名女生,再?gòu)倪@9名女生中抽取4人,設(shè)這4人中選擇“地理”的人數(shù)為,求的分布列及期望.
附:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓過(guò)點(diǎn),且其離心率為,過(guò)坐標(biāo)原點(diǎn)作兩條互相垂直的射線與橢圓分別相交于,兩點(diǎn).
(1)求橢圓的方程;
(2)是否存在圓心在原點(diǎn)的定圓與直線總相切?若存在,求定圓的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,,是軸上關(guān)于原點(diǎn)對(duì)稱的兩定點(diǎn),點(diǎn)滿足,點(diǎn)的軌跡為曲線.
(1)求的方程;
(2)過(guò)的直線與交于點(diǎn),線段的中點(diǎn)為,的中垂線分別與軸、軸交于點(diǎn),問(wèn)是否成立?若成立,求出直線的方程;若不成立,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com