【題目】如圖,AB、PA、PBC分別為⊙O的切線和割線,切點A是BD的中點,AC、BD相交于點E,AB、PE相交于點F,直線CF交⊙O于另一點G、交PA于點K.
證明:(1)K是PA的中點;(2)..
【答案】(1)見解析(2)見解析
【解析】
(1)在△APC中,由塞瓦定理,知.……①
∵A是BD的中點,PA是⊙O的切線,
∴∠PAB=∠ADB=∠ABD.
∴EB∥AP,. ………………………………………②
由①、②,得AK=KP.K是PA的中點.
另解:∴A是BD的中點,PA是⊙O的切線,
∴∠PAB=∠ADB=∠ABD,EB∥AP.
如圖,過點F作MN∥AP,交AE于點M,交PB于點N.則
,.…………①
且EB∥AP∥MN,.…………②
∴由①、②,得.
∴FM=FN.
又由MN∥AP,得,
∴AK=KP,K是PA的中點.
(2)由(1)及切線長定理,得.因此,.
又∠PKG=∠CKP,
∴△PKG∽△CKP.
∠APG=∠KPG=∠KCP=∠GCB=∠BAG.
又∠PAG=∠ABG,
∴△GPA∽△GAB,.
.
科目:高中數(shù)學 來源: 題型:
【題目】已知△ABC為銳角三角形,命題p:不等式logcosC >0恒成立,命題q:不等式logcosC >0恒成立,則復(fù)合命題p∨q、p∧q、¬p中,真命題的個數(shù)為( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定長為2的線段AB的兩個端點在以點(0, )為焦點的拋物線x2=2py上移動,記線段AB的中點為M,求點M到x軸的最短距離,并求此時點M的坐標。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義域為的單調(diào)遞減的奇函數(shù),當時,.
(1)求的值;
(2)求的解析式;
(3)若對任意的,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】常州地鐵項目正在緊張建設(shè)中,通車后將給市民出行帶來便利.已知某條線路通車后,地鐵的發(fā)車時間間隔 (單位:分鐘)滿足,.經(jīng)測算,地鐵載客量與發(fā)車時間間隔相關(guān),當時地鐵為滿載狀態(tài),載客量為1200人,當時,載客量會減少,減少的人數(shù)與的平方成正比,且發(fā)車時間間隔為2分鐘時的載客量為560人,記地鐵載客量為.
⑴ 求的表達式,并求當發(fā)車時間間隔為6分鐘時,地鐵的載客量;
⑵ 若該線路每分鐘的凈收益為(元),問當發(fā)車時間間隔為多少時,該線路每分鐘的凈收益最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若是兩個相交平面,則在下列命題中,真命題的序號為 .(寫出所有真命題的序號)
①若直線,則在平面內(nèi),一定不存在與直線平行的直線.
②若直線,則在平面內(nèi),一定存在無數(shù)條直線與直線垂直.
③若直線,則在平面內(nèi),不一定存在與直線垂直的直線.
④若直線,則在平面內(nèi),一定存在與直線垂直的直線.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)數(shù)列{an}按三角形進行排列,如圖,第一層一個數(shù)a1 , 第二層兩個數(shù)a2和a3 , 第三層三個數(shù)a4 , a5和a6 , 以此類推,且每個數(shù)字等于下一層的左右兩個數(shù)字之和,如a1=a2+a3 , a2=a4+a5 , a3=a5+a6 , ….
(1)若第四層四個數(shù)為0或1,a1為奇數(shù),則第四層四個數(shù)共有多少種不同取法?
(2)若第十一層十一個數(shù)為0或1,a1為5的倍數(shù),則第十一層十一個數(shù)共有多少種不同取法?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線方程為x2=2py(p>0),其焦點為F,點O為坐標原點,過焦點F作斜率為k(k≠0)的直線與拋物線交于A,B兩點,過A,B兩點分別作拋物線的兩條切線,設(shè)兩條切線交于點M.
(1)求 ;
(2)設(shè)直線MF與拋物線交于C,D兩點,且四邊形ACBD的面積為 ,求直線AB的斜率k.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com