【題目】設(shè)數(shù)列{an}按三角形進行排列,如圖,第一層一個數(shù)a1 , 第二層兩個數(shù)a2和a3 , 第三層三個數(shù)a4 , a5和a6 , 以此類推,且每個數(shù)字等于下一層的左右兩個數(shù)字之和,如a1=a2+a3 , a2=a4+a5 , a3=a5+a6 , ….

(1)若第四層四個數(shù)為0或1,a1為奇數(shù),則第四層四個數(shù)共有多少種不同取法?
(2)若第十一層十一個數(shù)為0或1,a1為5的倍數(shù),則第十一層十一個數(shù)共有多少種不同取法?

【答案】
(1)解:若第二層的兩個數(shù)為0或1,則a1=a2+a3,由a1為奇數(shù),可得第二層的兩個數(shù)有2種不同的取法;

若第三層的三個數(shù)為0或1,則a1=a4+2a5+a6,由a1為奇數(shù),可得第三層的三個數(shù)有4種不同的取法;

若第四層四個數(shù)為0或1,則a1=a7+2a8+2a9+a10,由a1為奇數(shù),可得第四層的四個數(shù)有8種不同的取法


(2)解:根據(jù)(1)中結(jié)論,若第十一層十一個數(shù)為0或1,

則a1=a56+2(a57+a58+…+a65)+a66,

若a1為5的倍數(shù),則a56,a66中一個為1,一個為0,

a57+a58+…+a65=2,或a57+a58+…+a65=7,

即a57,a58,…,a65中有2個1或2個0,

則第十一層十一個數(shù)共有 =144種不同取法


【解析】(1)若第四層四個數(shù)為0或1,則a1=a7+2a8+2a9+a10 , 由a1為奇數(shù),可得a7 , a10中一個為1,一個為0,進而得到答案;(2)若第十一層十一個數(shù)為0或1,a1為5的倍數(shù),則a56 , a66中一個為1,一個為0,且a57+a58+…+a65=2,或a57+a58+…+a65=7,進而得到答案.
【考點精析】通過靈活運用歸納推理,掌握根據(jù)一類事物的部分對象具有某種性質(zhì),退出這類事物的所有對象都具有這種性質(zhì)的推理,叫做歸納推理即可以解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,已知⊙O的方程x2+y2=4,直線l:x=4,在以O(shè)為極點,x軸的正半軸為極軸的極坐標系中,過極點作射線交⊙O于A,交直線l于B.
(1)寫出⊙O及直線l的極坐標方程;
(2)設(shè)AB中點為M,求動點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,AB、PA、PBC分別為⊙O的切線和割線切點ABD的中點,AC、BD相交于點E,ABPE相交于點F,直線CF交⊙O于另一點G、PA于點K.

證明:(1)KPA的中點;(2)..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將一個半徑為3分米,圓心角為α(α∈(0,2π))的扇形鐵皮焊接成一個容積為V立方分米的圓錐形無蓋容器(忽略損耗).
(1)求V關(guān)于α的函數(shù)關(guān)系式;
(2)當α為何值時,V取得最大值;
(3)容積最大的圓錐形容器能否完全蓋住桌面上一個半徑為0.5分米的球?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在極坐標系中,設(shè)直線l過點 ,且直線l與曲線C:ρ=asinθ(a>0)有且只有一個公共點,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有一個工廠生產(chǎn)某種產(chǎn)品的固定成本(固定投入)為元,已知每生產(chǎn)件這樣的產(chǎn)品需要再增加成本(元).已知生產(chǎn)出的產(chǎn)品都能以每件元的價格售出.

)將該廠的利潤(元)表示為產(chǎn)量(件)的函數(shù).

)要使利潤最大,該廠應(yīng)生產(chǎn)多少件這樣的產(chǎn)品?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】f(x)=
(1)用直尺或三角板畫出y=f(x)的圖象;
(2)求f(x)的最小值和最大值以及單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列函數(shù)中在 上為減函數(shù)的是(
A.y=2cos2x﹣1
B.y=﹣tanx
C.
D.y=sin2x+cos2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義域為的函數(shù)是奇函數(shù).

(1)求實數(shù)的值;

(2)判斷的單調(diào)性并用定義證明;

(3)已知不等式恒成立, 求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案