【題目】在直角坐標(biāo)系xOy中,已知⊙O的方程x2+y2=4,直線l:x=4,在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,過極點(diǎn)作射線交⊙O于A,交直線l于B.
(1)寫出⊙O及直線l的極坐標(biāo)方程;
(2)設(shè)AB中點(diǎn)為M,求動(dòng)點(diǎn)M的軌跡方程.
【答案】
(1)解:∵⊙O的方程x2+y2=4,故它的極坐標(biāo)方程為ρ2=4,即ρ=2;
∵直線l:x=4,故它的極坐標(biāo)方程為ρcosθ=4.
(2)解:由于AB中點(diǎn)為M,設(shè)動(dòng)點(diǎn)M(ρ,θ),A( ρ1,θ)、B( ρ2,θ),則 ,
∴動(dòng)點(diǎn)M的軌跡方程為 ρ=1+
【解析】(1)根據(jù)極坐標(biāo)方程與普通方程之間的轉(zhuǎn)化公式,求得⊙O及直線l的極坐標(biāo)方程.(2)設(shè)動(dòng)點(diǎn)M(ρ,θ),A( ρ1 , θ)、B( ρ2 , θ),則由題意可得 ,化簡(jiǎn)可得動(dòng)點(diǎn)M的軌跡方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a>0,b>0,c>0,函數(shù)f(x)=|x﹣a|+|x+b|+c的最小值為1.
(1)求a+b+c的值;
(2)求證:a2+b2+c2 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC為銳角三角形,命題p:不等式logcosC >0恒成立,命題q:不等式logcosC >0恒成立,則復(fù)合命題p∨q、p∧q、¬p中,真命題的個(gè)數(shù)為( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(I)當(dāng)時(shí),求的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)在上單調(diào)遞增,試求出的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在正方體中,點(diǎn)是棱上的一個(gè)動(dòng)點(diǎn),平面交棱于點(diǎn).給出下列命題:
①存在點(diǎn),使得//平面;
②對(duì)于任意的點(diǎn),平面平面;
③存在點(diǎn),使得平面;
④對(duì)于任意的點(diǎn),四棱錐的體積均不變.
其中正確命題的序號(hào)是______.(寫出所有正確命題的序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)過市場(chǎng)調(diào)查,超市中的某種小商品在過去的近40天的日銷售量(單位:件)與價(jià)格(單位:元)為時(shí)間(單位:天)的函數(shù),且日銷售量近似滿足,價(jià)格近似滿足。
(1)寫出該商品的日銷售額(單位:元)與時(shí)間()的函數(shù)解析式并用分段函數(shù)形式表示該解析式(日銷售額=銷售量商品價(jià)格);
(2)求該種商品的日銷售額的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定長(zhǎng)為2的線段AB的兩個(gè)端點(diǎn)在以點(diǎn)(0, )為焦點(diǎn)的拋物線x2=2py上移動(dòng),記線段AB的中點(diǎn)為M,求點(diǎn)M到x軸的最短距離,并求此時(shí)點(diǎn)M的坐標(biāo)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)?/span>的單調(diào)遞減的奇函數(shù),當(dāng)時(shí),.
(1)求的值;
(2)求的解析式;
(3)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}按三角形進(jìn)行排列,如圖,第一層一個(gè)數(shù)a1 , 第二層兩個(gè)數(shù)a2和a3 , 第三層三個(gè)數(shù)a4 , a5和a6 , 以此類推,且每個(gè)數(shù)字等于下一層的左右兩個(gè)數(shù)字之和,如a1=a2+a3 , a2=a4+a5 , a3=a5+a6 , ….
(1)若第四層四個(gè)數(shù)為0或1,a1為奇數(shù),則第四層四個(gè)數(shù)共有多少種不同取法?
(2)若第十一層十一個(gè)數(shù)為0或1,a1為5的倍數(shù),則第十一層十一個(gè)數(shù)共有多少種不同取法?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com