湖北宜昌“三峽人家”風(fēng)景區(qū)為提高經(jīng)濟(jì)效益,現(xiàn)對(duì)某一景點(diǎn)進(jìn)行改造升級(jí),從而擴(kuò)大內(nèi)需,提高旅游增加值,經(jīng)過(guò)市場(chǎng)調(diào)查,旅游增加值萬(wàn)元與投入萬(wàn)元之間滿(mǎn)足:為常數(shù),當(dāng)萬(wàn)元時(shí),萬(wàn)元;當(dāng)萬(wàn)元時(shí),萬(wàn)元.(參考數(shù)據(jù):,
(Ⅰ)求的解析式;
(Ⅱ)求該景點(diǎn)改造升級(jí)后旅游利潤(rùn)的最大值.(利潤(rùn)=旅游收入-投入)
(Ⅰ);(Ⅱ)24.4萬(wàn)元.

試題分析:(Ⅰ)由萬(wàn)元時(shí),萬(wàn)元;萬(wàn)元時(shí),萬(wàn)元代入已知函數(shù),解方程組;(Ⅱ)由導(dǎo)數(shù)法求極值,再求最值.
試題解析:(Ⅰ)由條件,
解得,                              (4分)
               (6分)
(Ⅱ)由
,              (9分)
(舍)或
當(dāng)時(shí),,
因此在(10,50)上是增函數(shù);
當(dāng)時(shí),,
因此在(50,+∞)上是減函數(shù),
的極大值點(diǎn).
即該景點(diǎn)改造升級(jí)后旅游利潤(rùn))的最大值為萬(wàn)元.    (12分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)
(Ⅰ)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),當(dāng)時(shí),的極小值為,求的解析式。
(Ⅱ)若上的單調(diào)函數(shù),求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù)處取得極值,且曲線在點(diǎn)處的切線垂直于直線
(1)求的值;
(2)若函數(shù),討論的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù),
,設(shè)函數(shù),且函數(shù)的零點(diǎn)均在區(qū)間內(nèi),則的最小值為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

過(guò)點(diǎn)(-1,1)與曲線相切的直線有     條(以數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù)在區(qū)間上是增函數(shù),則實(shí)數(shù)的取值范圍為        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

分別是自然對(duì)數(shù)的底和圓周率,則下列不等式不成立的是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)的圖象在點(diǎn)處的切線的傾斜角為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知,根據(jù)函數(shù)的性質(zhì)、積分的性質(zhì)和積分的幾何意義計(jì)算的值為(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案