精英家教網 > 高中數學 > 題目詳情
如圖,從圓O外一點P作圓O的割線PAB、PCD,AB是圓O的直徑,若PA=4,PC=5,CD=3,則∠CBD=   
【答案】分析:由于題目中并沒有給出與角相關的已知條件,故解題的關鍵是構造三角形,解三角形求角的大小,故根據已知條件,結合割線定理,求出圓的半徑是本題的切入點.
解答:解:由割線長定理得:
PA•PB=PC•PD
即4×PB=5×(5+3)
∴PB=10
∴AB=6
∴R=3,
所以△OCD為正三角形,
∠CBD=∠COD=30°.
點評:當已知中的條件可以得到一個等邊三角形、平行四邊形、直角三角形等特殊圖形,我們經常利用這些圖形特有的性質,得到相關的數量關系,進行求解.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,從圓O外一點P引圓O的兩條切線PA,PB,切點分別為A,B.如果∠APB=60°,PA=8,那么點P與O間的距離是( 。
A、16
B、20
C、
16
3
3
D、
4
3
3

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,從圓O外一點P引圓O的切線PA和割線PBC,已知PA=2
2
,PC=4,圓心O到BC的距離為
3
,則圓O的半徑為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,從圓O外一點P引兩條直線分別交圓O于點A,B,C,D,且PA=AB,PC=5,CD=9,則AB的長等于
 

查看答案和解析>>

科目:高中數學 來源: 題型:

附加題 選做題在A、B、C、D四小題中只能選做兩小題,每小題10分,共計20分,解答時應寫出文字說明、證明過程或演算步驟.
A.選做題(幾何證明選講)
如圖,從圓O外一點P作圓O的兩條切線,切點分別為A,B,AB與OP交于點M,設CD為過點M且不過圓心O的一條弦,
求證:O、C、P、D四點共圓.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•房山區(qū)一模)如圖,從圓O外一點P引圓O的切線PA和割線PBC,已知∠BPA=30°,BC=11,PB=1,則PA=
2
3
2
3
,圓O的半徑等于
7
7

查看答案和解析>>

同步練習冊答案