已知過點的直線交橢圓兩點,是橢圓的一個頂點,若線段的中點恰為點.
(1)求直線的方程;
(2)求的面積.

(1);(2)

解析試題分析:(1)由點差法可求得斜率,進(jìn)而求得直線方程組;(2)聯(lián)立圓與直線方程,利用弦長公式求得的長,再利用點到直線的距離求得點到直線的距離,再利用三角形面積公式即可求得結(jié)果.
試題解析:(1)由點差法,可得直線
(2)聯(lián)立,
到直線的距離
考點:1、直線與橢圓的位置關(guān)系;2、到直線的距離;3、點差法的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

平面直角坐標(biāo)系xoy中,動點滿足:點P到定點與到y(tǒng)軸的距離之差為.記動點P的軌跡為曲線C.
(1)求曲線C的軌跡方程;
(2)過點F的直線交曲線C于A、B兩點,過點A和原點O的直線交直線于點D,求證:直線DB平行于x軸.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知頂點為原點的拋物線的焦點與橢圓的右焦點重合,在第一和第四象限的交點分別為.
(1)若△AOB是邊長為的正三角形,求拋物線的方程;
(2)若,求橢圓的離心率
(3)點為橢圓上的任一點,若直線分別與軸交于點,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知為橢圓的左右焦點,是坐標(biāo)原點,過作垂直于軸的直線交橢圓于,設(shè) .
(1)證明: 成等比數(shù)列;
(2)若的坐標(biāo)為,求橢圓的方程;
(3)在(2)的橢圓中,過的直線與橢圓交于、兩點,若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,橢圓C=1(a>b>0)的離心率為,以坐標(biāo)原點為圓心,橢圓C的短半軸長為半徑的圓與直線xy+2=0相切.

(1)求橢圓C的方程;
(2)已知點P(0,1),Q(0,2),設(shè)MN是橢圓C上關(guān)于y軸對稱的不同兩點,直線PMQN相交于點T.求證:點T在橢圓C上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知定點和定直線,動點與定點的距離等于點到定直線的距離,記動點的軌跡為曲線.
(1)求曲線的方程.
(2)若以為圓心的圓與曲線交于不同兩點,且線段是此圓的直徑時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系xOy中,過點A(-2,-1)橢圓C=1(ab>0)的左焦點為F,短軸端點為B1B2,=2b2.
(1)求a、b的值;
(2)過點A的直線l與橢圓C的另一交點為Q,與y軸的交點為R.過原點O且平行于l的直線與橢圓的一個交點為P.若AQ·AR=3OP2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知雙曲線x2=1.
 
(1)若一橢圓與該雙曲線共焦點,且有一交點P(2,3),求橢圓方程.
(2)設(shè)(1)中橢圓的左、右頂點分別為A、B,右焦點為F,直線l為橢圓的右準(zhǔn)線,Nl上的一動點,且在x軸上方,直線AN與橢圓交于點M.若AMMN,求∠AMB的余弦值;
(3)設(shè)過A、F、N三點的圓與y軸交于P、Q兩點,當(dāng)線段PQ的中點為(0,9)時,求這個圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C1=1,橢圓C2C1的短軸為長軸,且與C1有相同的離心率.
(1)求橢圓C2的方程;
(2)設(shè)直線l與橢圓C2相交于不同的兩點A、B,已知A點的坐標(biāo)為(-2,0),點Q(0,y0)在線段AB的垂直平分線上,且=4,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案