分析 (1)由題意,2p=6,即可得出拋物線方程為y2=6x;
(2)設(shè)線段AB的中點為M(x0,y0),求出線段AB的垂直平分線的方程由此能求出直線AB的垂直平分線經(jīng)過定點C(5,0).
(3)直線AB的方程為y-y0=3y0(x-2),代入y2=6x,由此利用兩點間距離公式和點到直線距離公式能求出△ABC面積的表達式,利用均值定理能求出ABC面積的最大值.
解答 (1)解:由題意,2p=6,∴拋物線方程為y2=6x.…(2分)
(2)設(shè)線段AB的中點為M(x0,y0),
則x0=2,y0=y1+y22,kAB=y2−y1x2−x1=3y0.
線段AB的垂直平分線的方程是y-y0=-y03(x-2),①
由題意知x=5,y=0是①的一個解,
所以線段AB的垂直平分線與x軸的交點C為定點,
且點C坐標為(5,0).
所以直線AB的垂直平分線經(jīng)過定點C(5,0).…(4分)
(2)由①知直線AB的方程為y-y0=3y0(x-2),①
即x=y03(y-y0)+2,②
②代入y2=6x得y2=2y0(y-y0)+12,即y2-2y0y+2y02-12=0,③
依題意,y1,y2是方程③的兩個實根,且y1≠y2,
所以△>0,-2√3<y0<2√3.
|AB|=√(x1−x2)2+(y1−y2)2=23√(9+y02)(12−y02).
定點C(5,0)到線段AB的距離h=|CM|=√9+y02.
∴S△ABC=13√(9+y02)(12−y02)•√9+y02.…(8分)
(3)由(2)知S△ABC=13√(9+y02)(12−y02)•√9+y02≤13√12(9+y02+24−2y02+9+y023)3=14√73,…(11分)
當且僅當9+y02=24-2y02,
即y0=±√5
所以,△ABC面積的最大值為14√73.…(13分)
點評 本題考查直線的垂直平分線經(jīng)過定點的證明,考查三角形面積的表達式的求法,考查三角形面積的最大值的求法,解題時要認真審題,注意均值定理的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com