【題目】已知函數(shù)f(x)=sinx(2 cosx﹣sinx)+1 (Ⅰ)求f(x)的最小正周期;
(Ⅱ)討論f(x)在區(qū)間[﹣ , ]上的單調(diào)性.
【答案】解:(Ⅰ)函數(shù)f(x)=sinx(2 cosx﹣sinx)+1
=2 sinxcosx﹣2sin2x+1
= (2sinxcosx)+(1﹣2sin2x)
= sin2x+cos2x
=2( sin2x+ cos2x)
=2sin(2x+ ),
∴f(x)的最小正周期T= =π;
(Ⅱ)令z=2x+ ,
則函數(shù)y=2sinz在區(qū)間[﹣ +2kπ, +2kπ],k∈Z上單調(diào)遞增;
令﹣ +2kπ≤2x+ ≤ +2kπ,k∈Z,
解得﹣ +kπ≤x≤ +kπ,k∈Z,
令A(yù)=[﹣ , ],B=[﹣ +kπ, +kπ],k∈Z,
則A∩B=[﹣ , ];
∴當(dāng)x∈[﹣ , ]時(shí),f(x)在區(qū)間[﹣ , ]上單調(diào)遞增,在區(qū)間[ , ]上的單調(diào)遞減.
【解析】(Ⅰ)化函數(shù)f(x)為正弦型函數(shù),求出它的最小正周期T即可;(Ⅱ)根據(jù)正弦函數(shù)的單調(diào)性,求出f(x)在區(qū)間[﹣ , ]上單調(diào)遞增,[ , ]上的單調(diào)遞減.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一條光線從點(diǎn)(﹣2,﹣3)射出,經(jīng)y軸反射后與圓(x+3)2+(y﹣2)2=1相切,則反射光線所在直線的斜率為( )
A.﹣ 或﹣
B.﹣ 或﹣
C.﹣ 或﹣
D.﹣ 或﹣
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(1,0), =(m,1),且 與 的夾角為 .
(1)求| ﹣2 |;
(2)若( +λ )與 垂直,求實(shí)數(shù)λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知圓O:x2+y2=1,O1:(x﹣4)2+y2=4,動(dòng)點(diǎn)P在直線x+ y+b=0上,過P分別作圓O,O1的切線,切點(diǎn)分別為A,B,若滿足PB=2PA的點(diǎn)P有且只有兩個(gè),則實(shí)數(shù)b的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=4sinωxcos(ωx+ )+1(ω>0),其圖象上有兩點(diǎn)A(s,t),B(s+2π,t),其中﹣2<t<2,線段AB與函數(shù)圖象有五個(gè)交點(diǎn). (Ⅰ)求ω的值;
(Ⅱ)若函數(shù)f(x)在[x1 , x2]和[x3 , x4]上單調(diào)遞增,在[x2 , x3]上單調(diào)遞減,且滿足等式x4﹣x3=x2﹣x1= (x3﹣x2),求x1、x4所有可能取值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x+1)的定義域?yàn)閇﹣2,3],則f(3﹣2x)的定義域?yàn)椋?/span> )
A.[﹣5,5]
B.[﹣1,9]
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】4月23人是“世界讀書日”,某中學(xué)在此期間開展了一系列的讀書教育活動(dòng),為了解本校學(xué)生課外閱讀情況,學(xué)校隨機(jī)抽取了100名學(xué)生對其課外閱讀時(shí)間進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均課外閱讀時(shí)間(單位:分鐘)的頻率分布直方圖,若將日均課外閱讀時(shí)間不低于60分鐘的學(xué)生稱為“讀書謎”,低于60分鐘的學(xué)生稱為“非讀書謎”
(1)根據(jù)已知條件完成下面2×2的列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為“讀書謎”與性別有關(guān)?
非讀書迷 | 讀書迷 | 合計(jì) | |
男 | 15 | ||
女 | 45 | ||
合計(jì) |
(2)將頻率視為概率,現(xiàn)在從該校大量學(xué)生中,用隨機(jī)抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中的“讀書謎”的人數(shù)為X,若每次抽取的結(jié)果是相互獨(dú)立的,求X的分布列,期望E(X)和方程D(X) 附:K2= n=a+b+c+d
P(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)g(x)=ax﹣f(x)(a>0且a≠1),其中f(x)是定義在[a﹣6,2a]上的奇函數(shù),若 ,則g(1)=( )
A.0
B.﹣3
C.1
D.﹣1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com