【題目】已知等差數(shù)列滿足:.的前n項和為.

)求

)若 ,),求數(shù)列的前項和.

【答案】,=

【解析】

試題分析:)設出首項a1和公差d ,利用等差數(shù)列通項公式,就可求出,再利用等差數(shù)列前項求和公式就可求出;()由()知,再利用 ,),就可求出,再利用錯位相減法就可求出.

試題解析:)設等差數(shù)列{an}的首項為a1,公差為d

, 解得

,

,

= (1- + - ++-)

=(1-) =

所以數(shù)列的前項和= .

考點:1.等差數(shù)列的通項公式; 2. 等差數(shù)列的前n項和公式; 3.裂項法求數(shù)列的前n項和公式

型】解答
束】
18

【題目】在如圖所示的幾何體中,四邊形是等腰梯形, , 平面, ,

)求證: 平面

)求二面角的余弦值.

)在線段(含端點)上,是否存在一點,使得平面,若存在,求出的值;若不存在,請說明理由.

【答案】)見解析;;)存在,

【解析】試題分析:(1由題意,證明 ,證明;(2)建立空間直角坐標系,求平面和平面的法向量,解得余弦值為;(3)得, ,所以, ,所以存在中點.

試題解析:

, ,

,,

,且

、

)知,

, , , 兩兩垂直,以為坐標原點,

, , , 軸建系.

,則 , , ,

,

的一個法向量為,

,取,則

由于是面的法向量,

∵二面角為銳二面角∴余弦值為

)存在點

, ,

, , ,

,

,,

,

,∴∴存在中點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知點,圓,過點的動直線與圓交于兩點,線段的中點為,為坐標原點.

(Ⅰ)求的軌跡方程;

(Ⅱ)當不重合)時,求的方程及的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是定義在上的偶函數(shù),且時,均有,則滿足條件的可以是

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,圓的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)).

(1)若直線與圓相交于,兩點,求弦長,若點,求的值;

(2)以該直角坐標系的原點為極點,軸的非負半軸為極軸建立極坐標系,圓的極坐標方程為,圓和圓的交點為,,求弦所在直線的直角坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中,其中錯誤命題有(

A.單位向量都相等

B.中,若,則一定大于;

C.若數(shù)列的前項和為、、均為常數(shù)),則數(shù)列一定為等差數(shù)列;

D.若數(shù)列是等比數(shù)列,則數(shù)列也是等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)的圖象為C,如下結論中正確的是(

①圖象C關于直線對稱;②函數(shù)在區(qū)間內(nèi)是增函數(shù);

③圖象C關于點對稱;④由的圖象向右平移個單位長度可以得到圖象C

A.①③B.②③C.①②③D.①②

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某研究所計劃利用“神舟十號”宇宙飛船進行新產(chǎn)品搭載實驗,計劃搭載新產(chǎn)品甲,乙,要根據(jù)該產(chǎn)品的研制成本、產(chǎn)品重量、搭載實驗費用和預計產(chǎn)生收益來決定具體安排,通過調(diào)查,有關數(shù)據(jù)如表:

產(chǎn)品甲(件)

產(chǎn)品乙(件)

研制成本與搭載費用之和(萬元/件)

200

300

計劃最大資金額3000

產(chǎn)品重量(千克/件)

10

5

最大搭載重量110千克

預計收益(萬元/件)

160

120

試問:如何安排這兩種產(chǎn)品的件數(shù)進行搭載,才能使總預計收益達到最大,最大收益是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)為了解下屬某部門對本企業(yè)職工的服務情況,隨機訪問50名職工,根據(jù)這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為

1)求頻率分布直方圖中的值;

2)估計該企業(yè)的職工對該部門評分不低于80的概率;

3)從評分在的受訪職工中,隨機抽取2人,求此2人評分都在的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】唐三彩,中國古代陶瓷燒制工藝的珍品,它吸取了中國國畫、雕塑等工藝美術的特點,在中國文化中占有重要的歷史地位,在陶瓷史上留下了濃墨重彩的一筆.唐三彩的生產(chǎn)至今已有1300多年的歷史,制作工藝十分復雜,它的制作過程必須先后經(jīng)過兩次燒制,當?shù)谝淮螣坪细窈蠓娇蛇M入第二次燒制,兩次燒制過程相互獨立。某陶瓷廠準備仿制甲、乙、丙三件不同的唐三彩工藝品,根據(jù)該廠全面治污后的技術水平,經(jīng)過第一次燒制后,甲、乙、丙三件工藝品合格的概率依次為, , ,經(jīng)過第二次燒制后,甲、乙、丙三件工藝品合格的概率依次為, .

(1)求第一次燒制后甲、乙、丙三件中恰有一件工藝品合格的概率;

(2)經(jīng)過前后兩次燒制后,甲、乙、丙三件工藝品成為合格工藝品的件數(shù)為,求隨機變量的數(shù)學期望.

查看答案和解析>>

同步練習冊答案