設(shè)函數(shù),其中b≠0.
(1)當(dāng)b>時,判斷函數(shù)在定義域上的單調(diào)性:
(2)求函數(shù)的極值點.

(1)單調(diào)遞增,(2)時,有唯一的極小值點;
時,有一個極大值點和一個極小值點
時,函數(shù)上無極值點.

解析試題分析:(1)利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,有四步.一是求出函數(shù)定義域:,二是求出函數(shù)導(dǎo)數(shù),三是根據(jù)定義域及參數(shù)b>,確定導(dǎo)函數(shù)的符號,即根據(jù)四寫出結(jié)論:當(dāng)時,函數(shù)在定義域上單調(diào)遞增(2)求函數(shù)極值點,也是分四步.一是求出函數(shù)定義域:,二是求出函數(shù)導(dǎo)數(shù),三是根據(jù)定義域及參數(shù)b取值范圍,討論導(dǎo)函數(shù)的符號,四是關(guān)鍵導(dǎo)函數(shù)符號變化規(guī)律得出相應(yīng)結(jié)論.
試題解析:函數(shù)的定義域為              2
                    4
,則上遞增,在上遞減,
.當(dāng)時,,
上恒成立.
即當(dāng)時,函數(shù)在定義域上單調(diào)遞增           6
(2)分以下幾種情形討論:(1)由(1)知當(dāng)時函數(shù)無極值點.
(2)當(dāng)時,,時,
時,時,函數(shù)上無極值點   8
(3)當(dāng)時,解得兩個不同解,
當(dāng)時,,

此時上有唯一的極小值點          10
當(dāng)時,
都大于0 ,上小于0 ,
此時有一個極大值點和一個極小值點
綜上可知,時,上有唯一的極小值點
時,有一個極大值點和一個極小值點

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),).
(Ⅰ)當(dāng)時,求曲線在點處切線的方程;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)時,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)其中a是實數(shù).設(shè),為該函數(shù)圖象上的兩點,且
(1)指出函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)的圖象在點A,B處的切線互相垂直,且,求的最小值;
(3)若函數(shù)f(x)的圖象在點A,B處的切線重合,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某廠生產(chǎn)產(chǎn)品x件的總成本(萬元),已知產(chǎn)品單價P(萬元)與產(chǎn)品件數(shù)x滿足:,生產(chǎn)100件這樣的產(chǎn)品單價為50萬元,產(chǎn)量定為多少件時總利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知
(1)若,求的極大值點;
(2)若存在單調(diào)遞減區(qū)間,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)上是單調(diào)遞減函數(shù),
方程無實根,若“”為真,“”為假,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間和極值;
(2)當(dāng),且時,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)(其中).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)上有且只有一個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知
(1)若,求曲線在點處的切線方程;
(2)若 求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案