【題目】如圖,四邊形為矩形, 平面, .
(1)求證: ;
(2)若直線平面,試判斷直線與平面的位置關(guān)系,并說明理由;
(3)若, ,求三棱錐的體積.
【答案】(1)見解析;(2)見解析;(3).
【解析】試題分析:(1)證明線線垂直,一般利用線面垂直判定與性質(zhì)定理,經(jīng)多次轉(zhuǎn)化得到.在轉(zhuǎn)化過程中注意利用平幾知識.(2)實質(zhì)判斷平面與平面之間關(guān)系,由線線平行可得線面平行,再由線面平行可得面面平行,(3)求三棱錐體積,關(guān)鍵確定高線,而尋找高的方法,一是利用等體積法進行轉(zhuǎn)換,二是利用線面垂直.
試題解析:(1)因為底面, ,
所以底面,所以,
又因為底面為矩形,所以,又因為,所以平面,
所以.
(2)若直線平面,則直線平面,證明如下:
因為,且平面, 平面,所以平面.
在矩形中, ,且平面, 平面,所以平面.
又因為,所以平面平面.
又因為直線平面,所以直線平面.(3)易知,三棱錐的體積等于三棱錐的體積.
由(2)可知, 平面,又因為,所以平面
易知, 平面,所以點到平面的距離等于的長.
因為, ,所以
所以三棱錐的體積.
科目:高中數(shù)學 來源: 題型:
【題目】已知一家公司生產(chǎn)某種品牌服裝的年固定成本為10萬元,每生產(chǎn)1千件需另投入2.7萬元.設(shè)該公司一年內(nèi)共生產(chǎn)該品牌服裝x千件并全部銷售完,每千件的銷售收入為萬元,且.
(1)寫出年利潤W(萬元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該公司在這一品牌服裝的生產(chǎn)中所獲得利潤最大?(注:年利潤=年銷售收入﹣年總成本)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線過點,且與軸、軸都交于正半軸,當直線與坐標軸圍成的三角形面積取得最小值時,求:
(1)直線的方程;
(2)直線l關(guān)于直線m:y=2x-1對稱的直線方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某單位共有老、中、青職工430人,其中青年職工160人,中年職工人數(shù)是老年職工人數(shù)的2倍。為了解職工身體狀況,現(xiàn)采用分層抽樣方法進行調(diào)查,在抽取的樣本中有青年職工32人,則該樣本中的老年職工人數(shù)為
A. 9 B. 18 C. 27 D. 36
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
若是函數(shù)的極值點,1是函數(shù)的一個零點,求的值;
當時,討論函數(shù)的單調(diào)性;
若對任意,都存在,使得成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】圓錐的軸截面是等腰直角三角形,底面半徑為1,點是圓心,過頂點的截面與底面所成的二面角大小是.
(1)求點到截面的距離;
(2)點為圓周上一點,且,是中點,求異面直線與所成角的大小.(結(jié)果用反三角函數(shù)值表示)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓:,圓:.
(Ⅰ)設(shè)直線被圓所截得的弦的中點為,判斷點與圓的位置關(guān)系;
(Ⅱ)設(shè)圓被圓截得的一段圓。ㄔ趫A內(nèi)部,含端點)為,若直線:與圓弧只有一個公共點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)().
(Ⅰ)若函數(shù)有零點,求實數(shù)的取值范圍;
(Ⅱ)若對任意的,都有,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法中正確的有______.
①.
②已知,則.
③函數(shù)的圖象與函數(shù)的圖象關(guān)于原點對稱.
④函數(shù)的遞增區(qū)間為.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com