【題目】在平面直角坐標(biāo)系中,已知圓,圓與圓外切于點(diǎn),且過點(diǎn),則圓的標(biāo)準(zhǔn)方程為_________.

【答案】

【解析】

將圓的方程化為標(biāo)準(zhǔn)方程,可求出的值,記點(diǎn),可知圓心為直線和線段中垂線的交點(diǎn),進(jìn)而可求出點(diǎn)的坐標(biāo),計算出為圓的半徑,即可得出圓的標(biāo)準(zhǔn)方程.

記點(diǎn)、,圓的標(biāo)準(zhǔn)方程為,圓心,

將點(diǎn)的坐標(biāo)代入圓的方程得,得.

①若,則點(diǎn),線段的中垂線方程為,直線的方程為

由題意可知,圓心在直線上,且在線段的中垂線上,

聯(lián)立,解得,則圓心的坐標(biāo)為,

的半徑為,,圓的半徑為

此時,,則兩圓內(nèi)切,不合乎題意;

②若,則點(diǎn),線段的中垂線方程為,直線的方程為,

由題意可知,圓心在直線上,且在線段的中垂線上,

聯(lián)立,解得,則圓心的坐標(biāo)為,

的半徑為,,圓的半徑為,

此時,,則兩圓外切,合乎題意.

綜上所述,圓的標(biāo)準(zhǔn)方程為.

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列是無窮數(shù)列,滿足.

1)若,,求、、的值;

2)求證:“數(shù)列中存在使得”是“數(shù)列中有無數(shù)多項是”的充要條件;

3)求證:在數(shù)列,使得.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】十九大以來,某貧困地區(qū)扶貧辦積極貫徹落實(shí)國家精準(zhǔn)扶貧的政策要求,帶領(lǐng)廣大農(nóng)村地區(qū)人民群眾脫貧奔小康。經(jīng)過不懈的奮力拼搏,新農(nóng)村建設(shè)取得巨大進(jìn)步,農(nóng)民年收入也逐年增加。為了更好的制定2019年關(guān)于加快提升農(nóng)民年收人力爭早日脫貧的工作計劃,該地扶貧辦統(tǒng)計了2018年位農(nóng)民的年收人并制成如下頻率分布直方圖:

(1)根據(jù)頻率分布直方圖,估計位農(nóng)民的年平均收入(單位:千元)(同一組數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點(diǎn)值表示);

(2)由頻率分布直方圖,可以認(rèn)為該貧困地區(qū)農(nóng)民年收入服從正態(tài)分布,其中近似為年平均收入近似為樣本方差,經(jīng)計算得.利用該正態(tài)分布,求:

(i)在2019年脫貧攻堅工作中,若使該地區(qū)約有占總農(nóng)民人數(shù)的的農(nóng)民的年收入高于扶貧辦制定的最低年收入標(biāo)準(zhǔn),則最低年收入大約為多少千元?

(ii)為了調(diào)研“精準(zhǔn)扶貧,不落一人”的政策要求落實(shí)情況,扶貧辦隨機(jī)走訪了位農(nóng)民。若每個農(nóng)民的年收人相互獨(dú)立,問:這位農(nóng)民中的年收入不少于千元的人數(shù)最有可能是多少?

附:參考數(shù)據(jù)與公式

則①;②;③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市環(huán)保部門對市中心每天的環(huán)境污染情況進(jìn)行調(diào)查研究后,發(fā)現(xiàn)一天中環(huán)境綜合污染指數(shù)與時刻(時)的關(guān)系為,,其中是與氣象有關(guān)的參數(shù),且.若用每天的最大值為當(dāng)天的綜合污染指數(shù),并記作

1)令,求的取值范圍;

2)求的表達(dá)式,并規(guī)定當(dāng)時為綜合污染指數(shù)不超標(biāo),求當(dāng)在什么范圍內(nèi)時,該市市中心的綜合污染指數(shù)不超標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=﹣x﹣cos2x+m(sinx﹣cosx)在(﹣∞,+∞)上單調(diào)遞減,則m的取值范圍是____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,側(cè)面為正方形,側(cè)面為菱形,,平面平面.

1)求直線與平面所成角的正弦值;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時,(i)求曲線在點(diǎn)處的切線方程;

(ii)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)拋物線的公共點(diǎn)的橫坐標(biāo)為,過且與相切的直線交于另一點(diǎn),過且與相切的直線交于另一點(diǎn),記的面積.

(Ⅰ)求的值(用表示);

(Ⅱ)若,求的取值范圍.

注:若直線與拋物線有且只有一個公共點(diǎn),且與拋物線的對稱軸不平行也不重合,則稱該直線與拋物線相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】北方的冬天戶外冰天雪地,若水管裸露在外,則管內(nèi)的水就會結(jié)冰從而凍裂水管,給用戶生活帶來不便.每年冬天來臨前,工作人員就會給裸露在外的水管保暖:在水管外面包裹保溫帶,用一條保溫帶盤旋而上一次包裹到位.某工作人員采用四層包裹法(除水管兩端外包裹水管的保溫帶都是四層):如圖1所示是相鄰四層保溫帶的下邊緣輪廓線,相鄰兩條輪廓線的間距是帶寬的四分之一.設(shè)水管的直徑與保溫帶的寬度都為4cm.在圖2水管的側(cè)面展開圖中,此保溫帶的輪廓線與水管母線所成的角的余弦值是( )(保溫帶厚度忽略不計)

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案