【題目】如圖,在三棱柱中,側(cè)面為正方形,側(cè)面為菱形,,平面平面.

1)求直線與平面所成角的正弦值;

2)求二面角的余弦值.

【答案】1;(2.

【解析】

1)證明出平面,然后以點為坐標(biāo)原點,分別以,所在的直線為軸,建立空間直角坐標(biāo)系,設(shè)正方形的邊長為,利用空間向量法可計算出直線與平面所成角的正弦值;

2)計算出平面的一個法向量,以及平面的一個法向量,利用空間向量法可計算出二面角的余弦值.

1)因為四邊形為正方形,所以,

因為平面平面,平面平面,

平面,所以平面.

以點為坐標(biāo)原點,分別以,所在的直線為軸,建立如圖所示的空間直角坐標(biāo)系.

不妨設(shè)正方形的邊長為,則.

在菱形中,因為,所以,所以.

因為平面的法向量為

設(shè)直線與平面所成角為,則,

即直線與平面所成角的正弦值為;

2)由(1)可知,,所以.

設(shè)平面的一個法向量為

因為

,,即.

設(shè)平面的一個法向量為,因為,,

因為,所以,取.

設(shè)二面角的平面角為,

,

所以二面角的余弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐中,底面四邊形為正方形,已知平面,.

1)證明:;

2)求與平面所成角的正弦值;

3)在棱上是否存在一點,使得平面平面?若存在,求的值并證明,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠用鮮牛奶在某臺設(shè)備上生產(chǎn)A,B兩種奶制品.生產(chǎn)1A產(chǎn)品需鮮牛奶2噸,使用設(shè)備1小時,獲利1 000元;生產(chǎn)1B產(chǎn)品需鮮牛奶1.5噸,使用設(shè)備1.5小時,獲利1 200.要求每天B產(chǎn)品的產(chǎn)量不超過A產(chǎn)品產(chǎn)量的2倍,設(shè)備每天生產(chǎn)AB兩種產(chǎn)品時間之和不超過12小時.假定每天可獲取的鮮牛奶數(shù)量W(單位:噸)是一個隨機變量,其分布列為

W

12

15

18

P

0.3

0.5

0.2

該廠每天根據(jù)獲取的鮮牛奶數(shù)量安排生產(chǎn),使其獲利最大,因此每天的最大獲利Z(單位:元)是一個隨機變量.

(I)Z的分布列和均值;

(II)若每天可獲取的鮮牛奶數(shù)量相互獨立,求3天中至少有1天的最大獲利超過10 000元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓)的左焦點為,上一點,且軸垂直,,分別為橢圓的右頂點和上頂點,且,且的面積是,其中是坐標(biāo)原點.

1)求橢圓的方程.

2)若過點的直線,互相垂直,且分別與橢圓交于點,,四點,求四邊形的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓,圓與圓外切于點,且過點,則圓的標(biāo)準(zhǔn)方程為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某校中小學(xué)生人數(shù)和近視情況分別如圖所示.為了解該校中小學(xué)生的近視形成原因,用分層抽樣的方式從中抽取一個容量為50的樣本進(jìn)行調(diào)查.

(1)求樣本中高中生、初中生及小學(xué)生的人數(shù);

(2)從該校初中生和高中生中各隨機抽取1名學(xué)生,用頻率估計概率,求恰有1名學(xué)生近視的概率;

(3)假設(shè)高中生樣本中恰有5名近視學(xué)生,從高中生樣本中隨機抽取2名學(xué)生,用表示2名學(xué)生中近視的人數(shù),求隨機變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2017·衢州調(diào)研)已知四棱錐PABCD的底面ABCD是菱形,∠ADC120°,AD的中點M是頂點P在底面ABCD的射影,NPC的中點.

(1)求證:平面MPB⊥平面PBC;

(2)MPMC,求直線BN與平面PMC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.證明:

1)存在唯一x0∈(0,1),使f(x0)0

2)存在唯一x1∈(1,2),使g(x1)0,且對(1)中的x0,有x0x1<2

查看答案和解析>>

同步練習(xí)冊答案