【題目】已知橢圓:()的左焦點(diǎn)為,是上一點(diǎn),且與軸垂直,,分別為橢圓的右頂點(diǎn)和上頂點(diǎn),且,且的面積是,其中是坐標(biāo)原點(diǎn).
(1)求橢圓的方程.
(2)若過點(diǎn)的直線,互相垂直,且分別與橢圓交于點(diǎn),,,四點(diǎn),求四邊形的面積的最小值.
【答案】(1);(2)
【解析】
(1)依題意可設(shè),則有,解出即可;
(2)分類討論,當(dāng),時(shí),;
當(dāng),斜率存在時(shí),設(shè):,:,分別聯(lián)立橢圓方程,利用韋達(dá)定理求出,,再根據(jù)面積公式以及基本不等式即可求出答案.
解:(1)依題意畫出下圖可設(shè),,,
則有:,解得,
∴橢圓的標(biāo)準(zhǔn)方程為;
(2)①當(dāng),時(shí),;
②當(dāng),斜率存在時(shí),設(shè):,:,分別聯(lián)立橢圓方程,
聯(lián)立得,
∴,,
∴,
同理,
∴,
當(dāng)且僅當(dāng)即即時(shí)等號成立,
故四邊形的面積的最小值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面是邊長為2的正方形,側(cè)面底面,為上的點(diǎn),且平面
(1)求證:平面平面;
(2)當(dāng)三棱錐體積最大時(shí),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代典籍《周易》用“卦”描述萬物的變化,每一卦由六組成.其中記載一種起卦方法稱為“大衍法”,其做法為:從50根草中先取出一根放在案上顯著位置,用這根蓍草象征太極.將剩下的49根隨意分成左右兩份,然后從右邊拿出一根放中間,再把左右兩份每4根一數(shù),直到兩份中最后各剩下不超過4根(含4根)為止,把兩份剩下的也放中間.將49根里除中間之外的蓍草合在一起,為一變;重復(fù)一變的步驟得二變和三變,三變得一爻.若一變之后還剩40根蓍草,則二變之后還剩36根蓍草的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中,中心在原點(diǎn),焦點(diǎn)在y軸上的橢圓C與橢圓的離心率相同,且橢圓C短軸的頂點(diǎn)與橢圓E長軸的頂點(diǎn)重合.
(1)求橢圓C的方程;
(2)若直線l與橢圓E有且僅有一個(gè)公共點(diǎn),且與橢圓C交于不同兩點(diǎn)A,B,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市環(huán)保部門對市中心每天的環(huán)境污染情況進(jìn)行調(diào)查研究后,發(fā)現(xiàn)一天中環(huán)境綜合污染指數(shù)與時(shí)刻(時(shí))的關(guān)系為,,其中是與氣象有關(guān)的參數(shù),且.若用每天的最大值為當(dāng)天的綜合污染指數(shù),并記作.
(1)令,,求的取值范圍;
(2)求的表達(dá)式,并規(guī)定當(dāng)時(shí)為綜合污染指數(shù)不超標(biāo),求當(dāng)在什么范圍內(nèi)時(shí),該市市中心的綜合污染指數(shù)不超標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),的最大值為.
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(Ⅲ)當(dāng)時(shí),令,是否存在區(qū)間.使得函數(shù)在區(qū)間上的值域?yàn)?/span>若存在,求實(shí)數(shù)的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,側(cè)面為正方形,側(cè)面為菱形,,平面平面.
(1)求直線與平面所成角的正弦值;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,且橢圓過點(diǎn)
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線與交于、兩點(diǎn),點(diǎn)在橢圓上,是坐標(biāo)原點(diǎn),若,判定四邊形的面積是否為定值?若為定值,求出該定值;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線半徑為的圓與直線相切,圓心在軸上且在直線的上方.
(1)求圓的方程;
(2)設(shè)過點(diǎn) 的直線被圓截得弦長等于,求直線的方程;
(3)過點(diǎn)的直線與圓交于兩點(diǎn)(在軸上方),問在軸正半軸上是否存在點(diǎn),使得軸平分?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com