【題目】函數(shù)fn(x)=xn+bx+c(n∈Z,b,c∈R).
(1)若n=﹣1,且f﹣1(1)=f﹣1()=5,試求實(shí)數(shù)b,c的值;
(2)設(shè)n=2,若對(duì)任意x1,x2∈[﹣1,1]有|f2(x1)﹣f2(x2)|≤6恒成立,求b的取值范圍.
【答案】(1)b=3,c=1;(2)﹣3≤b≤3.
【解析】
(1)由條件可得,的方程,解方程可得,;(2)當(dāng)時(shí),,對(duì)任意,,有恒成立等價(jià)于在,上的最大值與最小值之差.討論對(duì)稱軸和區(qū)間的關(guān)系,判斷單調(diào)性,可得最值,解不等式即可得到所求范圍.
(1)n=﹣1時(shí),f﹣1(x)=x﹣1+bx+c,
且f﹣1(1)=f﹣1()=5,
可得1+b+c=5,3b+c=5,解得b=3,c=1;
(2)當(dāng)n=2時(shí),f2(x)=x2+bx+c,
對(duì)任意x1,x2∈[﹣1,1]有|f2(x1)﹣f2(x2)|≤6恒成立等價(jià)于
f2(x)在[﹣1,1]上的最大值與最小值之差M≤6.
①當(dāng)1,即b>2時(shí),f2(x)在[﹣1,1]遞增,
f2(x)min=f2(﹣1)=1﹣b+c,f2(x)max=f2(1)=1+b+c,
M=2b>4,且2b≤6,可得2<b≤3;
②當(dāng)﹣10,即0≤b≤2時(shí),f2(x)在[﹣1,]遞減,在(,1]遞增,
f2(x)min=f2()=c,f2(x)max=f2(1)=1+b+c,M=(1)2≤6恒成立,故0≤b≤2;
③當(dāng)01即﹣2≤b<0時(shí),f2(x)在[﹣1,]遞減,在(,1]遞增,
f2(x)min=f2()=c,f2(x)max=f2(﹣1)=1﹣b+c,M=(1)2≤6恒成立,故﹣2≤b<0;
④當(dāng)1,即b<﹣2時(shí),f2(x)在[﹣1,1]遞減,
f2(x)min=f2(1)=1+b+c,f2(x)max=f2(﹣1)=1﹣b+c,
M=﹣2b>4且﹣2b≤6,可得﹣3≤b<﹣2.
綜上可得,b的取值范圍是﹣3≤b≤3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)為,是上一點(diǎn),且.
(1)求的方程;
(2)設(shè)點(diǎn)是上異于點(diǎn)的一點(diǎn),直線與直線交于點(diǎn),過(guò)點(diǎn)作軸的垂線交于點(diǎn),證明:直線過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的圖象與軸的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)之間的距離為,且圖象過(guò)點(diǎn)
(1)求的解析式;
(2)求函數(shù)的單調(diào)遞增區(qū)間;
(3)將函數(shù)的圖象向右平移個(gè)單位,再將圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),得到函數(shù)的圖象,若關(guān)于的方程,在區(qū)間上有且只有一個(gè)實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)令,判斷g(x)的單調(diào)性;
(2)當(dāng)x>1時(shí),,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某地一天從時(shí)的溫度變化曲線近似滿足函數(shù).
(1)求該地區(qū)這一段時(shí)間內(nèi)溫度的最大溫差.
(2)若有一種細(xì)菌在到之間可以生存,則在這段時(shí)間內(nèi),該細(xì)菌最多能存活多長(zhǎng)時(shí)間?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),若在其定義域內(nèi)存在實(shí)數(shù)滿足,則稱函數(shù)為“局部奇函數(shù)”,若函數(shù)是定義在上的“局部奇函數(shù)”,則實(shí)數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,正項(xiàng)等比數(shù)列中, ,,則( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在第二屆烏鎮(zhèn)互聯(lián)網(wǎng)大會(huì)中, 為了提高安保的級(jí)別同時(shí)又為了方便接待,現(xiàn)將其中的五個(gè)參會(huì)國(guó)的人員安排酒店住宿,這五個(gè)參會(huì)國(guó)要在、、三家酒店選擇一家,且每家酒店至少有一個(gè)參會(huì)國(guó)入住,則這樣的安排方法共有
A.種B.種
C.種D.種
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲題型:給出如圖數(shù)陣表格形式,表格內(nèi)是按某種規(guī)律排列成的有限個(gè)正整數(shù).
(1)記第一行的自左至右構(gòu)成數(shù)列,是的前項(xiàng)和,試求;
(2)記為第列第行交點(diǎn)的數(shù)字,觀察數(shù)陣請(qǐng)寫(xiě)出表達(dá)式,若,試求出的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com