【題目】已知數(shù)列的前項(xiàng)和為,且,又?jǐn)?shù)列滿足: .

(1)求數(shù)列的通項(xiàng)公式

(2)當(dāng)為何值時(shí),數(shù)列是等比數(shù)列?此時(shí)數(shù)列的前項(xiàng)和為,若存在,使m<成立,求的最大值.

【答案】(1) (2) ,m的最大值為1

【解析】試題分析:(1)由數(shù)列的前n項(xiàng)和求出首項(xiàng),再由an=Sn-Sn-1求出n≥2的通項(xiàng)公式,驗(yàn)證首項(xiàng)后得答案;(2)由anbn=n求出數(shù)列{bn}的通項(xiàng)公式,結(jié)合數(shù)列{bn}是等比數(shù)列求得λ值,求出等比數(shù)列的前項(xiàng)和為,研究的單調(diào)性,求出的最小值即得解.

試題解析:

(1),

當(dāng)時(shí), ;當(dāng) 時(shí),,

故數(shù)列的通項(xiàng)公式為

(2),則 ,則數(shù)列為等比數(shù)列,

則首項(xiàng)為 滿足的情況,故

因?yàn)?/span> ,所以 是單調(diào)遞增的,故

又存在,使m<成立,則的最大值為1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,g(x)=x2+2mx+
(1)用定義法證明f(x)在R上是增函數(shù);
(2)求出所有滿足不等式f(2a﹣a2)+f(3)>0的實(shí)數(shù)a構(gòu)成的集合;
(3)對任意的實(shí)數(shù)x1∈[﹣1,1],都存在一個(gè)實(shí)數(shù)x2∈[﹣1,1],使得f(x1)=g(x2),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c.已知 bcosA=asinB. (Ⅰ)求A;
(Ⅱ)若a= ,b=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓 經(jīng)過橢圓 的左右焦點(diǎn),且與橢圓在第一象限的交點(diǎn)為,且三點(diǎn)共線,直線交橢圓, 兩點(diǎn),且).

(1)求橢圓的方程;

(2)當(dāng)三角形的面積取得最大值時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,a2=4,a4=16.
(1)求公比q;
(2)若a3 , a5分別為等差數(shù)列{bn}的第3項(xiàng)和第5項(xiàng),求數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an},a1=1,an+1= + ,數(shù)列{bn},bn=2n1an
(1)求證:數(shù)列{bn}為等差數(shù)列,并求出{bn}的通項(xiàng)公式;
(2)數(shù)列{an}的前n項(xiàng)和為Sn , 求Sn
(3)正數(shù)數(shù)列{dn}滿足 = .設(shè)數(shù)列{dn}的前n項(xiàng)和為Dn , 求不超過D100的最大整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在邊長為2的正方體中,M是棱CC1的中點(diǎn).

(1)求B到面的距離;

(2)求BC與面所成角的正切值;

(3)求面與面ABCD所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知:以點(diǎn)為圓心的圓與x軸交于點(diǎn)O,A,與y軸交于點(diǎn)O,B,其中O為原點(diǎn).

(1)求證:△OAB的面積為定值; (2)設(shè)直線y=-2x+4與圓C交于點(diǎn)MN,若|OM|=|ON|,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知
(1)求 的值;
(2)若 ,b=2,求△ABC的面積S.

查看答案和解析>>

同步練習(xí)冊答案