已知y=f(x)是定義在R上的偶函數(shù),且在[0,+∞)上單調(diào)遞增,則滿足f(m)<f(1)的實(shí)數(shù)m的范圍是( 。
A、-1<m<0
B、0<m<1
C、-1<m<1
D、-1≤m≤1
考點(diǎn):函數(shù)奇偶性的判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用函數(shù)的奇偶性和單調(diào)性之間的關(guān)系將不等式轉(zhuǎn)化為f(|m|)<f(1),即可得到結(jié)論.
解答: 解:∵y=f(x)是定義在R上的偶函數(shù),
∴不等式f(m)<f(1)等價(jià)為f(|m|)<f(1),
∵函數(shù)f(x)在[0,+∞)上單調(diào)遞增,
∴|m|<1,
解得-1<m<1,
故選:C.
點(diǎn)評(píng):本題主要考查不等式的求解,利用函數(shù)的奇偶性和單調(diào)性之間的關(guān)系,將不等式進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵,綜合考查函數(shù)的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)(1,2)且垂直于直線x+y-1=0的直線l的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}滿足a2+a4=20,a3+a5=40,則公比q=(  )
A、
1
2
B、-
1
2
C、2
D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,|AB|=3,|AC|=2,
AD
=
1
2
AB
+
3
4
AC
,則直線AD通過△ABC的( 。
A、垂心B、外心C、重心D、內(nèi)心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定積分
3
0
xdx等于( 。
A、
9
2
B、9
C、8
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=3x5+4x4+5x3+2x2+2x+1,當(dāng)x=2時(shí),則V4的值為( 。
A、50B、52
C、104D、106

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)z1=i5+i6…+i12,z2=i5•i6…i12,則z1,z2的關(guān)系是( 。
A、z1=z2
B、z1=-z2
C、z1=z2-1
D、無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

3位數(shù)學(xué)家,4位物理學(xué)家,站成兩排照像.其中前排3人后排4人,要求數(shù)學(xué)家要相鄰,則不同的排隊(duì)方法共有( 。
A、5040種B、840種
C、720種D、432種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)+2f(
1
x
)=2x-1對(duì)于任意x∈R且x≠0都成立,求函數(shù)f(x)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案