已知以點(diǎn)為圓心的圓與直線相切,過(guò)點(diǎn)的動(dòng)直線與圓相交于兩點(diǎn).
(1)求圓的方程;
(2)當(dāng)時(shí),求直線的方程.

(1);(2).

解析試題分析:(1)由直線與以為圓心的圓相切得到該圓的半徑,然后根據(jù)圓心的坐標(biāo)與半徑即可寫(xiě)出圓的標(biāo)準(zhǔn)方程;(2)先由弦的長(zhǎng)與圓的半徑得到圓心到直線的距離,進(jìn)而設(shè)出直線的方程(注意檢驗(yàn)直線斜率不存在的情況),由點(diǎn)到直線的距離公式即可算出的取值,從而可寫(xiě)出直線的方程.
試題解析:(1)由題意知到直線的距離為圓半徑

的方程為
(2)設(shè)線段的中點(diǎn)為,連結(jié),則由垂徑定理可知,且,在中由勾股定理易知
當(dāng)動(dòng)直線的斜率不存在時(shí),直線的方程為時(shí),顯然滿足題意;
當(dāng)動(dòng)直線的斜率存在時(shí),設(shè)動(dòng)直線的方程為:
到動(dòng)直線的距離為1得
為所求方程.
考點(diǎn):1.圓的標(biāo)準(zhǔn)方程;2.點(diǎn)到直線的距離公式;3.直線與圓的位置關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知一個(gè)圓經(jīng)過(guò)直線l:與圓C:的兩個(gè)交點(diǎn),并且面積有最小值,求此圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知點(diǎn),動(dòng)點(diǎn)P 滿足:|PA|=2|PB|.
(1)若點(diǎn)P的軌跡為曲線,求此曲線的方程;
(2)若點(diǎn)Q在直線l1: x+y+3=0上,直線l2經(jīng)過(guò)點(diǎn)Q且與曲線只有一個(gè)公共點(diǎn)M,求|QM|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知曲線的方程為:,為常數(shù)).
(1)判斷曲線的形狀;
(2)設(shè)曲線分別與軸、軸交于點(diǎn)、、不同于原點(diǎn)),試判斷的面積是否為定值?并證明你的判斷;
(3)設(shè)直線與曲線交于不同的兩點(diǎn),且,求曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓C:,直線L:.
(1)求證:對(duì)直線L與圓C總有兩個(gè)不同交點(diǎn);
(2)設(shè)L與圓C交于不同兩點(diǎn)A、B,求弦AB的中點(diǎn)M的軌跡方程;
(3)若定點(diǎn)P(1,1)分弦AB所得向量滿足,求此時(shí)直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓的方程:
(1)求m的取值范圍;
(2)若圓C與直線相交于,兩點(diǎn),且,求的值
(3)若(1)中的圓與直線x+2y-4=0相交于M、N兩點(diǎn),且OM⊥ON(O為坐標(biāo)原點(diǎn)),求m的值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓C:(x-3)2+(y-4)2=4,直線l1過(guò)定點(diǎn)A(1,0).
(1)若l1與圓相切,求l1的方程;
(2)若l1與圓相交于P、Q兩點(diǎn),線段PQ的中點(diǎn)為M,又l1與l2:x+2y+2=0的交點(diǎn)為N,判斷AM·AN是否為定值?若是,則求出定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓:,過(guò)定點(diǎn)作斜率為1的直線交圓、兩點(diǎn),為線段的中點(diǎn).
(1)求的值;
(2)設(shè)為圓上異于的一點(diǎn),求△面積的最大值;
(3)從圓外一點(diǎn)向圓引一條切線,切點(diǎn)為,且有 , 求的最小值,并求取最小值時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(1)求圓心在軸上,且與直線相切于點(diǎn)的圓的方程;
(2)已知圓過(guò)點(diǎn),且與圓關(guān)于直線對(duì)稱(chēng),求圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案