已知圓:,過定點(diǎn)作斜率為1的直線交圓于、兩點(diǎn),為線段的中點(diǎn).
(1)求的值;
(2)設(shè)為圓上異于、的一點(diǎn),求△面積的最大值;
(3)從圓外一點(diǎn)向圓引一條切線,切點(diǎn)為,且有 , 求的最小值,并求取最小值時點(diǎn)的坐標(biāo).
(1)2;(2);(3);.
解析試題分析:(1)通過⊥求解的值;
(2)當(dāng)為與垂直的直徑,且與較遠(yuǎn)的直徑端點(diǎn)時,△面積最大;
(3)通過△為直角三角形勾股定理列出關(guān)系式,然后通過進(jìn)行轉(zhuǎn)化,
找出點(diǎn)所在軌跡,然后利用點(diǎn)到直線的距離即可找到的最小值,進(jìn)而求出點(diǎn)的坐標(biāo).
試題解析:(1)由題知圓心,又為線段的中點(diǎn),∴⊥,
∴,即,∴.
(2)由(1)知圓的方程為,∴圓心,半徑,
又直線的方程是,
∴圓心到直線的距離,.
當(dāng)⊥時,△面積最大,.
(3)∵⊥,∴,
又,∴.
設(shè),則有,整理得,即點(diǎn)在上,
∴的最小值即為的最小值,
由解得
∴滿足條件的點(diǎn)坐標(biāo)為.
考點(diǎn):1.弦所在直線方程的求解;2.最值問題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知以點(diǎn)為圓心的圓與直線相切,過點(diǎn)的動直線與圓相交于兩點(diǎn).
(1)求圓的方程;
(2)當(dāng)時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一個圓.
(1)求實(shí)數(shù)m的取值范圍;
(2)求該圓半徑r的取值范圍;
(3)求圓心的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知點(diǎn)A(-1,0)與點(diǎn)B(1,0),C是圓x2+y2=1上的動點(diǎn),連結(jié)BC并延長至D,使得CD=BC,求AC與OD的交點(diǎn)P的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知F1,F2分別是橢圓E:+y2=1的左、右焦點(diǎn),F1,F2關(guān)于直線x+y-2=0的對稱點(diǎn)是圓C的一條直徑的兩個端點(diǎn).
(1)求圓C的方程;
(2)設(shè)過點(diǎn)F2的直線l被橢圓E和圓C所截得的弦長分別為a,b.當(dāng)ab最大時,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,已知曲線C由圓弧C1和圓弧C2相接而成,兩相接點(diǎn)M,N均在直線x=5上.圓弧C1的圓心是坐標(biāo)原點(diǎn)O,半徑為13;圓弧C2過點(diǎn)A(29,0).
(1)求圓弧C2的方程.
(2)曲線C上是否存在點(diǎn)P,滿足PA=PO?若存在,指出有幾個這樣的點(diǎn);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,橢圓C:=1(a>b>0)的離心率為,以坐標(biāo)原點(diǎn)為圓心,橢圓C的短半軸長為半徑的圓與直線x-y+2=0相切.
(1)求橢圓C的方程;
(2)已知點(diǎn)P(0,1),Q(0,2),設(shè)M,N是橢圓C上關(guān)于y軸對稱的不同兩點(diǎn),直線PM與QN相交于點(diǎn)T.求證:點(diǎn)T在橢圓C上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知圓與圓外切于點(diǎn),直線是兩圓的外公切線,分別與兩圓相切于兩點(diǎn),是圓的直徑,過作圓的切線,切點(diǎn)為.
(Ⅰ)求證:三點(diǎn)共線;
(Ⅱ)求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com