已知橢圓
的離心率為
.雙曲線
的漸近線與橢圓
有四個交點,以這四個交點為頂點的四邊形的面積為16,則橢圓
的方程為( )
試題分析:由題意,雙曲線
的漸近線方程為
,
因為以這四個交點為頂點的四邊形的面積為16,故邊長為4.
所以
在橢圓
上,所以
,因為
,
所以
,所以
,所以
,
,所以橢圓的方程為
.
點評:本題考查雙曲線的性質(zhì),考查橢圓的標(biāo)準(zhǔn)方程與性質(zhì),正確運用雙曲線的性質(zhì)是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
經(jīng)過點
,且兩焦點與短軸的一個端點構(gòu)成等腰直角三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)動直線
交橢圓
于
、
兩點,試問:在坐標(biāo)平面上是否存在一個定點
,使得以
為直徑的圓恒過點
.若存在,求出點
的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
如圖,
是平面
的斜線段,
為斜足。若點
在平面
內(nèi)運動,使得
的面積為定值,則動點
的軌跡是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓的兩個焦點
,
,過
且與坐標(biāo)軸不平行的直線
與橢圓交于
兩點,如果
的周長等于8。
(1)求橢圓的方程;
(2)若過點
的直線
與橢圓交于不同兩點
,試問在
軸上是否存在定點
,使
恒為定值?若存在,求出點
的坐標(biāo)及定值;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知拋物線和橢圓都經(jīng)過點
,它們在
軸上有共同焦點,橢圓的對稱軸是坐標(biāo)軸,拋物線的頂點為坐標(biāo)原點.
(1)求這兩條曲線的方程;
(2)對于拋物線上任意一點
,點
都滿足
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
雙曲線方程為x
-2y
=1.則它的右焦點坐標(biāo)是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知過拋物線
的焦點
且斜率為
的直線與拋物線交于
兩點,且
,則
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
若雙曲線的漸近線方程為
,它的一個焦點是
,則雙曲線的標(biāo)準(zhǔn)方程是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
△
ABC的兩個頂點坐標(biāo)分別是
B(0,6)和
C(0,-6),另兩邊
AB、
AC的斜率的乘積是-
,求頂點
A的軌跡方程.?
查看答案和解析>>