如圖,
是平面
的斜線段,
為斜足。若點
在平面
內(nèi)運動,使得
的面積為定值,則動點
的軌跡是( )
試題分析:本題其實就是一個平面斜截一個圓柱表面的問題,因為三角形面積為定值,以AB為底,則底邊長一定,從而可得P到直線AB的距離為定值,分析可得,點P的軌跡為一以AB為軸線的圓柱面,與平面α的交線,且α與圓柱的軸線斜交,由平面與圓柱面的截面的性質(zhì)判斷,可得P的軌跡為橢圓.
點評:解決時要注意截面與圓柱的軸線的不同位置時,得到的截面形狀也不同
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:單選題
已知橢圓的焦點為
,
P是橢圓上一動點,如果延長
F1P到
Q,使
,那么動點
Q的軌跡是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的長軸長為
,離心率為
,
分別為其左右焦點.一動圓過點
,且與直線
相切.
(1)求橢圓
及動圓圓心軌跡
的方程;
(2) 在曲線
上有兩點
、
,橢圓
上有兩點
、
,滿足
與
共線,
與
共線,且
,求四邊形
面積的最小值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知圓C的圓心是直線
與x軸的交點,且圓C與直線x+y+3=0相切,則圓C的方程為
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
C:
的短軸長等于焦距,橢圓
C上的點到右焦點
的最短距離為
.
(1)求橢圓
C的方程;
(2)過點
且斜率為
(
>0)的直線
與
C交于
兩點,
是點
關(guān)于
軸的對稱點,證明:
三點共線.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
中心在原點,焦點在
軸上的雙曲線
的離心率為
,直線與雙曲線
交于
兩點,線段
中點
在第一象限,并且在拋物線
上,且
到拋物線焦點的距離為
,則直線的斜率為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,已知拋物線
的焦點為
,過焦點
且不平行于
軸的動直線
交拋物線于
,
兩點,拋物線在
、
兩點處的切線交于點
.
(Ⅰ)求證:
,
,
三點的橫坐標成等差數(shù)列;
(Ⅱ)設直線
交該拋物線于
,
兩點,求四邊形
面積的最小值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
橢圓
+
=1(a>b>0)上一點A關(guān)于原點的對稱點為B, F為其右焦點, 若AF⊥BF, 設∠ABF=
, 且
∈[
,
], 則該橢圓離心率的取值范圍為 ( )
A.[,1 ) | B.[,] | C.[, 1) | D.[, |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知橢圓
的離心率為
.雙曲線
的漸近線與橢圓
有四個交點,以這四個交點為頂點的四邊形的面積為16,則橢圓
的方程為( )
查看答案和解析>>