【題目】如圖,已知多面體的底面是邊長為2的正方形,底面,,且.
(1)求多面體的體積;
(2)記線段的中點為,在平面內(nèi)過點作一條直線與平面平行,要求保留作圖痕跡,但不要求證明.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,直線經(jīng)過橢圓的左頂點.
(1)求橢圓的方程;
(2)設直線()交橢圓于兩點(不同于點).過原點的一條直線與直線交于點,與直線分別交于點.
(。┊時,求的最大值;
(ⅱ)若,求證:點在一條定直線上.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為弘揚傳統(tǒng)文化,某校舉行詩詞大賽.經(jīng)過層層選拔,最終甲乙兩人進入總決賽,爭奪冠軍.決賽規(guī)則如下:①比賽共設有五道題;②雙方輪流答題,每次回答一道,兩人答題的先后順序通過抽簽決定;③若答對,自己得1分;若答錯,則對方得1分;④先得3分者獲勝.已知甲、乙答對每道題的概率分別為和,且每次答題的結果相互獨立.
(Ⅰ)若乙先答題,求甲3:0獲勝的概率;
(Ⅱ)若甲先答題,記乙所得分數(shù)為,求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線,直線交于兩點, 是的中點,過作軸的垂線交于點.
(1)證明:拋物線在點處的切線與平行;
(2)是否存在實數(shù),使以為直徑的圓經(jīng)過點?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中央政府為了對應因人口老齡化而造成的勞動力短缺等問題,擬定出臺“延遲退休年齡政策”,為了了解人們對“延遲退休年齡政策”的態(tài)度,責成人社部進行調研,人社部從網(wǎng)上年齡在15~65的人群中隨機調查50人,調查數(shù)據(jù)的頻率分布直方圖和支持“延遲退休”的人數(shù)與年齡的統(tǒng)計結果如下:
(1)由以上統(tǒng)計數(shù)據(jù)填下面2×2列聯(lián)表,并問是否有90%的把握認為以45歲為分界點對“延遲退休年齡政策”的支持度有差異:
(2)若從年齡在,的被調查人中各隨機選取兩人進行調查,記選中的4人中支持“延遲退休”人數(shù)為,求隨機變量的分布列及數(shù)學期望.
參考數(shù)據(jù):
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),(為常數(shù)).
(1)當時,判斷在的單調性,并用定義證明;
(2)若對任意,不等式恒成立,求的取值范圍;
(3)討論零點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,直線的參數(shù)方程為(為參數(shù)),在極坐標系(與直角坐標系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,圓的方程為.
(1)求圓的直角坐標方程;
(2)設圓與直線交于點,若點的坐標為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地擬建造一座體育館,其設計方案側面的外輪廓線如圖所示:曲線是以點為圓心的圓的一部分,其中,是圓的切線,且,曲線是拋物線的一部分,,且恰好等于圓的半徑.
(1)若米,米,求與的值;
(2)若體育館側面的最大寬度不超過75米,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com