【題目】定義在R上的函數(shù)f(x)滿足:f′(x)﹣f(x)=xex , 且f(0)= ,則 的最大值為(
A.0
B.
C.1
D.2

【答案】D
【解析】解:令F(x)= ,則F′(x)= = =x,
則F(x)= x2+c,
∴f(x)=ex x2+c),
∵f(0)=
∴c= ,
∴f(x)=ex x2+ ),
∴f′(x)=ex x2+ )+xex ,
= ,
設(shè)y= ,
則yx2+y=x2+2x+1,
∴(1﹣y)x2+2x+(1﹣y)=0,
當(dāng)y=1時,x=0,
當(dāng)y≠1時,要使方程有解,
則△=4﹣4(1﹣y)2≥0,
解得0≤y≤2,
故y的最大值為2,
的最大值為2,
故選:D.
先構(gòu)造函數(shù),F(xiàn)(x)= ,根據(jù)題意求出f(x)的解析式,即可得到 = ,再根據(jù)根的判別式即可求出最大值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為1的正方體中, 為線段的中點(diǎn)為線段上一動點(diǎn).

(Ⅰ)求證:;

(Ⅱ)當(dāng)時,求三棱錐的體積;

(Ⅲ)在線段上是否存在一點(diǎn),使得平面?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】采用系統(tǒng)抽樣方法從960人中抽取32人做問卷調(diào)查,為此將他們隨即編號為1,2…960,分組后在第一組采用簡單隨機(jī)抽樣的方法抽到的號碼為5,抽到的32人中,編號落入?yún)^(qū)間[1,450]的人做問卷A,編號落入?yún)^(qū)間[451,750]的人做問卷B,其余的人做問卷C,則抽到的32人中,做問卷C的人數(shù)為(
A.15
B.10
C.9
D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出以下命題,其中真命題的個數(shù)是( )

①若“”是假命題,則“”是真命題;

②命題“若,則”為真命題;

③已知空間任意一點(diǎn)和不共線的三點(diǎn),,若,則,四點(diǎn)共面;

④直線與雙曲線交于,兩點(diǎn),若,則這樣的直線有3條;

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次趣味校園運(yùn)動會的頒獎儀式上,高一、高二、高三代表隊人數(shù)分別為120人、120人、n人.為了活躍氣氛,大會組委會在頒獎過程中穿插抽獎活動,并用分層抽樣的方法從三個代表隊中共抽取20人在前排就座,其中高二代表隊有6人.

(1)求n的值;

(2)把在前排就座的高二代表隊6人分別記為a,b,c,d,e,f,現(xiàn)隨機(jī)從中抽取2人上臺抽獎.求a和b至少有一人上臺抽獎的概率;

(3)抽獎活動的規(guī)則是:代表通過操作按鍵使電腦自動產(chǎn)生兩個[0,1]之間的均勻隨機(jī)數(shù)x,y,并按如圖所示的程序框圖執(zhí)行.若電腦顯示中獎,則該代表中獎;若電腦顯示謝謝,則不中獎,求該代表中獎的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)橢圓C: (a>b>0),動直線l與橢圓C只有一個公共點(diǎn)P,且點(diǎn)P在第一象限.
(Ⅰ)已知直線l的斜率為k,用a,b,k表示點(diǎn)P的坐標(biāo);
(Ⅱ)若過原點(diǎn)O的直線l1與l垂直,證明:點(diǎn)P到直線l1的距離的最大值為a﹣b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C:y2=4x,焦點(diǎn)為F,過點(diǎn)P(﹣1,0)作斜率為k(k>0)的直線l與拋物線C交于A,B兩點(diǎn),直線AF,BF分別交拋物線C于M,N兩點(diǎn),若 + =18,則k=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)F1、F2為雙曲線C:x2 =1的左、右焦點(diǎn),過F2作垂直于x軸的直線,在x軸上方交雙曲線C于點(diǎn)M,∠MF1F2=30°.
(1)求雙曲線C的方程;
(2)過雙曲線C上任意一點(diǎn)P作該雙曲線兩條漸近線的垂線,垂足分別為P1、P2 , 求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)十九大報告提出的實施鄉(xiāng)村振興戰(zhàn)略,某村莊投資 萬元建起了一座綠色農(nóng)產(chǎn)品加工廠.經(jīng)營中,第一年支出 萬元,以后每年的支出比上一年增加了 萬元,從第一年起每年農(nóng)場品銷售收入為 萬元(前 年的純利潤綜合=前 年的 總收入-前 年的總支出-投資額 萬元).

(1)該廠從第幾年開始盈利?

(2)該廠第幾年年平均純利潤達(dá)到最大?并求出年平均純利潤的最大值.

【答案】(1) 從第 開始盈利(2) 該廠第 年年平均純利潤達(dá)到最大,年平均純利潤最大值為 萬元

【解析】試題分析(1)根據(jù)公式得到,令函數(shù)值大于0解得參數(shù)范圍;(2根據(jù)公式得到,由均值不等式得到函數(shù)最值.

解析:

由題意可知前 年的純利潤總和

(1)由 ,即 ,解得

知,從第 開始盈利.

(2)年平均純利潤

因為 ,即

所以

當(dāng)且僅當(dāng) ,即 時等號成立.

年平均純利潤最大值為 萬元,

故該廠第 年年平均純利潤達(dá)到最大,年平均純利潤最大值為 萬元.

型】解答
結(jié)束】
21

【題目】已知數(shù)列 的前 項和為 ,并且滿足 , .

(1)求數(shù)列 通項公式;

(2)設(shè) 為數(shù)列 的前 項和,求證: .

查看答案和解析>>

同步練習(xí)冊答案