【題目】給出以下命題,其中真命題的個(gè)數(shù)是( )
①若“或”是假命題,則“且”是真命題;
②命題“若,則或”為真命題;
③已知空間任意一點(diǎn)和不共線的三點(diǎn),,,若,則,,,四點(diǎn)共面;
④直線與雙曲線交于,兩點(diǎn),若,則這樣的直線有3條;
A. 1 B. 2 C. 3 D. 4
【答案】C
【解析】(1)若“或”是假命題,則是假命題p是真命題,是假命題是真命題,故且真命題,選項(xiàng)正確.
(2) 命題“若,則或”的逆否命題是若a=2,且b=3,則a+b=5.這個(gè)命題是真命題,故原命題也是真命題.
(3)∵++=1,∴P,A,B,C四點(diǎn)共面,故(3)正確,
(4)由雙曲線方程得a=2,c=3,即直線l:y=k(x﹣3)過雙曲線的右焦點(diǎn),
∵雙曲線的兩個(gè)頂點(diǎn)之間的距離是2a=4,a+c=2+3=5,
∴當(dāng)直線與雙曲線左右兩支各有一個(gè)交點(diǎn)時(shí),當(dāng)k=0時(shí)2a=4,
則滿足|AB|=5的直線有2條,當(dāng)直線與實(shí)軸垂直時(shí),
當(dāng)x=c=3時(shí),得,即=,即則y=±,
此時(shí)通徑長為5,若|AB|=5,則此時(shí)直線AB的斜率不存在,故不滿足條件.綜上可知有2條直線滿足|AB|=5,故(4)錯(cuò)誤,
故答案為:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】北京市某年11月1日—20日監(jiān)測最高最低溫度及差值數(shù)據(jù)如下:
日期 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
最高溫度(℃) | 20 | 16 | 14 | 20 | 20 | 20 | 18 | 15 | 12 | 11 | 12 | 12 | 13 | 9 | 8 | 6 | 13 | 11 | 10 | 14 |
最低溫度(℃) | 5 | 4 | 2 | 4 | 9 | 6 | 9 | 3 | -1 | 0 | 5 | 1 | 4 | -1 | -4 | -2 | -1 | 0 | 1 | 3 |
差值(℃) | 15 | 12 | 12 | 16 | 11 | 14 | 9 | 12 | 13 | 11 | 7 | 11 | 9 | 10 | 12 | 8 | 14 | 11 | 9 | 11 |
(Ⅰ)完成下面的頻率分布表及頻率分布直方圖,并寫出頻率分布直方圖中的值;
(Ⅱ)從日溫差大于等于的這些天中,隨機(jī)選取2天.求這兩天中至少有一天的溫差在區(qū)間內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),函數(shù).
若無零點(diǎn),求實(shí)數(shù)k的取值范圍;
若有兩個(gè)相異零點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某小學(xué)隨機(jī)抽取100名同學(xué),將他們的身高(單位:厘米)數(shù)據(jù)繪制成頻率分布直方圖(如圖).若要從身高在[100,110),[110,120),[120,130)三組內(nèi)的學(xué)生中,用分層抽樣的方法選取28人參加一項(xiàng)活動(dòng),則從身高在[120,130)內(nèi)的學(xué)生中選取的人數(shù)應(yīng)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在去年的足球甲聯(lián)賽上,一隊(duì)每場比賽平均失球數(shù)是1.5,全年比賽失球個(gè)數(shù)的標(biāo)準(zhǔn)差為1.1;二隊(duì)每場比賽平均失球數(shù)是2.1,全年失球個(gè)數(shù)的標(biāo)準(zhǔn)差是0.4,你認(rèn)為下列說法中正確的個(gè)數(shù)有( )
①平均來說一隊(duì)比二隊(duì)防守技術(shù)好;②二隊(duì)比一隊(duì)防守技術(shù)水平更穩(wěn)定;③一隊(duì)防守有時(shí)表現(xiàn)很差,有時(shí)表現(xiàn)又非常好;④二隊(duì)很少不失球.
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ln(ax+ )+ .
(1)若a>0,且f(x)在(0,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(2)是否存在實(shí)數(shù)a,使得函數(shù)f(x)在(0,+∞)上的最小值為1?若存在,求出實(shí)數(shù)a的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的函數(shù)f(x)滿足:f′(x)﹣f(x)=xex , 且f(0)= ,則 的最大值為( )
A.0
B.
C.1
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面給出一個(gè)問題的算法:
S1 輸入x;
S2 若x≤2,則執(zhí)行S3;否則,執(zhí)行S4;
S3 輸出-2x-1;
S4 輸出x2-6x+3.
問題:
(1)這個(gè)算法解決的是什么問題?
(2)當(dāng)輸入的x值為多大時(shí),輸出的數(shù)值最小?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com