【題目】如圖,正三棱柱的各條棱長均相等, 的中點(diǎn), 分別是線段和線段上的動(dòng)點(diǎn)(含端點(diǎn)),且滿足.當(dāng)運(yùn)動(dòng)時(shí),下列結(jié)論中不正確的是( )

A. 平面平面 B. 三棱錐的體積為定值

C. 可能為直角三角形 D. 平面與平面所成的銳二面角范圍為

【答案】C

【解析】

如圖,當(dāng)分別在上運(yùn)動(dòng)時(shí),若滿足,則線段必過正方形

的中心,而平面平面平面正確當(dāng)分別在上運(yùn)動(dòng)時(shí), 的面積不變, 到平面的距離不變的棱錐的體積不變,即三棱維的體積為定值, 正確;若為直角三角形,則必是以為直角的直角三角形,但的最大值為,而此時(shí)的長大于不可能為直角三角形, 錯(cuò)誤;當(dāng)分別為中點(diǎn)時(shí),平面與平面所成的角為,當(dāng)重合, 重合時(shí),平面與平面所成的銳二面角最大,為等于平面與平面所成的銳二面角范圍為, 正確,故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某旅游愛好者計(jì)劃從3個(gè)亞洲國家A1,A2,A33個(gè)歐洲國家B1B2,B3中選擇2個(gè)國家去旅游.

(1)若從這6個(gè)國家中任選2個(gè),求這2個(gè)國家都是亞洲國家的概率;

(2)若從亞洲國家和歐洲國家中各選1個(gè),求這兩個(gè)國家包括A1,但不包括B1的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,斜率為的直線交拋物線兩點(diǎn),當(dāng)直線過點(diǎn)時(shí),以為直徑的圓與直線相切.

(1)求拋物線的方程;

(2)與平行的直線交拋物線于,兩點(diǎn),若平行線,之間的距離為,且的面積是面積的倍,求的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】空中有一氣球,在它的正西方A點(diǎn)測得它的仰角為45°,同時(shí)在它南偏東60°B點(diǎn),測得它的仰角為30°,已知AB兩點(diǎn)間的距離為107米,這兩個(gè)觀測點(diǎn)均離地1米,則測量時(shí)氣球離地的距離是_____米.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè) 的內(nèi)角 的對(duì)邊分別為 已知

(1)求角 ;

(2)若 ,求 的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸的極坐標(biāo)中,圓的方程為

(1)寫出直線的普通方程和圓的直角坐標(biāo)方程;

(2)若點(diǎn)的坐標(biāo)為,圓與直線交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)判斷函數(shù)的奇偶性,并說明理由;

(2)設(shè),問函數(shù)的圖像是否關(guān)于某直線成軸對(duì)稱圖形,如果是,求出的值,如果不是,請(qǐng)說明理由;(可利用真命題:“函數(shù)的圖像關(guān)于某直線成軸對(duì)稱圖形”的充要條件為“函數(shù)是偶函數(shù)”)

(3)設(shè),函數(shù),若函數(shù)的圖像有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)舉行一次“環(huán)保知識(shí)競賽”,全校學(xué)生參加了這次競賽.為了解本次競賽成績情況,從中抽取了部分學(xué)生的成績(得分取正整數(shù),滿分為分)作為樣本進(jìn)行統(tǒng)計(jì),請(qǐng)根據(jù)下面尚未完成并有局部污損的樣本的頻率分布表和頻率分布直方圖(如圖所示)解決下列問題:

)寫出 , 的值.

)在選取的樣本中,從競賽成績是分以上(含分)的同學(xué)中隨機(jī)抽取名同學(xué)到廣場參加環(huán)保知識(shí)的志愿宣傳活動(dòng),求所抽取的名同學(xué)來自同一組的概率.

)在()的條件下,設(shè)表示所抽取的名同學(xué)中來自第組的人數(shù),求的分布列及其數(shù)學(xué)期望.

組別

分組

頻數(shù)

頻率

合計(jì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,其中為自然對(duì)數(shù)的底數(shù).

(Ⅰ)設(shè)(其中的導(dǎo)函數(shù)),判斷上的單調(diào)性;

(Ⅱ)若無零點(diǎn),試確定正數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案