【題目】已知拋物線,斜率為的直線交拋物線,兩點(diǎn),當(dāng)直線過(guò)點(diǎn)時(shí),以為直徑的圓與直線相切.

(1)求拋物線的方程;

(2)與平行的直線交拋物線于,兩點(diǎn),若平行線,之間的距離為,且的面積是面積的倍,求的方程.

【答案】(1);(2),或者

【解析】

(1)設(shè)直線方程為,代入根據(jù)中點(diǎn)坐標(biāo)公式,結(jié)合韋達(dá)定理可得圓心坐標(biāo),利用弦長(zhǎng)公式可得圓的直徑,利用圓心到直線的距離等于半徑,列方程求解即可得到拋物線的方程;(2)利用點(diǎn)到直線距離公式、弦長(zhǎng)公式,結(jié)合三角形面積公式可得,同理可得,利用 的面積是面積的倍列方程求解即可.

1)設(shè)AB直線方程為代入

設(shè)

當(dāng)時(shí),,AB的中點(diǎn)為

依題意可知,解之得

拋物線方程為.

2O到直線的距離為,

.

因?yàn)槠叫芯之間的距離為,則CD的直線方程為

.

依題意可知,即

化簡(jiǎn)得,∴代入

或者.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)fx)滿足條件f0)=1,及fx+1)﹣fx)=2x

1)求函數(shù)fx)的解析式;

2)在區(qū)間[1,1]上,yfx)的圖象恒在y2x+m的圖象上方,試確定實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三棱柱中,側(cè)面是邊長(zhǎng)為2的菱形,,.

(Ⅰ)證明:

(Ⅱ)若底面是以為直角頂點(diǎn)的直角三角形,且,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若某校研究性學(xué)習(xí)小組共6人,計(jì)劃同時(shí)參觀科普展,該科普展共有甲,乙,丙三個(gè)展廳,6人各自隨機(jī)地確定參觀順序,在每個(gè)展廳參觀一小時(shí)后去其他展廳,所有展廳參觀結(jié)束后集合返回,設(shè)事件A為:在參觀的第一小時(shí)時(shí)間內(nèi),甲,乙,丙三個(gè)展廳恰好分別有該小組的2個(gè)人;事件B為:在參觀的第二個(gè)小時(shí)時(shí)間內(nèi),該小組在甲展廳人數(shù)恰好為2人,則 ).

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】大型綜藝節(jié)目,《最強(qiáng)大腦》中,有一個(gè)游戲叫做盲擰魔方,就是玩家先觀察魔方狀態(tài)并進(jìn)行記憶,記住后蒙住眼睛快速還原魔方,盲擰在外人看來(lái)很神奇,其實(shí)原理是十分簡(jiǎn)單的,要學(xué)會(huì)盲擰也是很容易的根據(jù)調(diào)查顯示,是否喜歡盲擰魔方與性別有關(guān)為了驗(yàn)證這個(gè)結(jié)論,某興趣小組隨機(jī)抽取了50名魔方愛(ài)好者進(jìn)行調(diào)查,得到的情況如表所示,并邀請(qǐng)其中20名男生參加盲擰三階魔方比賽,其完成情況如表所示.

(Ⅰ)將表補(bǔ)充完整,并判斷能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為是否喜歡盲擰與性別有關(guān)?

(Ⅱ)現(xiàn)從表中成功完成時(shí)間在這兩組內(nèi)的6名男生中任意抽取2人對(duì)他們的盲擰情況進(jìn)行視頻記錄,求2人成功完成時(shí)間恰好在同一組內(nèi)的概率.

附參考公式及數(shù)據(jù):,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,由直三棱柱和四棱錐構(gòu)成的幾何體中,,平面平面

(I)求證:;

(II)若M為中點(diǎn),求證:平面;

(III)在線段BC上(含端點(diǎn))是否存在點(diǎn)P,使直線DP與平面所成的角為?若存在,求得值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中a >2.

(I)討論函數(shù)f(x)的單調(diào)性;

(II)若對(duì)于任意的,恒有,求a的取值范圍.

(III)設(shè),,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=x2+2xtanθ-1,x∈[-1,],其中θ∈(-,).

(1)當(dāng)θ=-時(shí),求函數(shù)f(x)的最大值;

(2)求θ的取值范圍,使yf(x)在區(qū)間[-1,]上是單調(diào)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)aR).

1)討論yfx)的單調(diào)性;

2)若函數(shù)fx)有兩個(gè)不同零點(diǎn)x1x2,求實(shí)數(shù)a的范圍并證明

查看答案和解析>>

同步練習(xí)冊(cè)答案