【題目】已知函數(shù)aR).

1)討論yfx)的單調(diào)性;

2)若函數(shù)fx)有兩個(gè)不同零點(diǎn)x1,x2,求實(shí)數(shù)a的范圍并證明

【答案】(1)見解析;(2),證明見解析

【解析】

1)先求得函數(shù)的單調(diào)區(qū)間,然后求函數(shù)的導(dǎo)數(shù),對(duì)分成兩種情況,分類討論函數(shù)的單調(diào)區(qū)間.2)令,分離常數(shù),構(gòu)造函數(shù),利用導(dǎo)數(shù)求得的單調(diào)區(qū)間和最大值,結(jié)合圖像求得的取值范圍.構(gòu)造函數(shù)),利用導(dǎo)數(shù)證得成立,從而證得上成立.根據(jù)的單調(diào)性證得.

函數(shù)的定義域?yàn)?/span>

當(dāng)時(shí),,函數(shù)上為增函數(shù);

當(dāng)時(shí),,,,

,

,

綜上:當(dāng)時(shí),函數(shù)上為增函數(shù);

當(dāng)時(shí),.

(2)有兩個(gè)不同的零點(diǎn),即有兩個(gè)不同的根,

有兩個(gè)不同的交點(diǎn);

,

,當(dāng)時(shí),

.

由上設(shè)

當(dāng)時(shí),,故上為增函數(shù),

,從而有,

,而

,又因?yàn)?/span>

所以,

,,

,即證.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線,斜率為的直線交拋物線,兩點(diǎn),當(dāng)直線過(guò)點(diǎn)時(shí),以為直徑的圓與直線相切.

(1)求拋物線的方程;

(2)與平行的直線交拋物線于,兩點(diǎn),若平行線,之間的距離為,且的面積是面積的倍,求的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的定義域?yàn)?/span>,且對(duì)任意實(shí)數(shù)恒有)成立.

(1)求函數(shù)的解析式;

(2)討論上的單調(diào)性,并用定義加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:已知四棱錐PABCD的底面ABCD是平行四邊形,PA面ABCD,M是AD的中點(diǎn),N是PC的中點(diǎn).

(1)求證:MN面PAB;

(2)若平面PMC面PAD,求證:CMAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,坐標(biāo)原點(diǎn)為.橢圓的動(dòng)弦過(guò)右焦點(diǎn)且不垂直于坐標(biāo)軸, 的中點(diǎn)為,過(guò)且垂直于線段的直線交射線于點(diǎn)

(I)證明:點(diǎn)在直線上;

(Ⅱ)當(dāng)四邊形是平行四邊形時(shí),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線是正常數(shù))上有兩點(diǎn),焦點(diǎn)

甲:;

乙:

丙:;

。.

以上是“直線經(jīng)過(guò)焦點(diǎn)”的充要條件有幾個(gè)( 。

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某品牌汽車的店,對(duì)最近100份分期付款購(gòu)車情況進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)情況如下表所示.已知分9期付款的頻率為0.4;該店經(jīng)銷一輛該品牌汽車,若顧客分3期付款,其利潤(rùn)為1萬(wàn)元;分6期或9期付款,其利潤(rùn)為2萬(wàn)元;分12期付款,其利潤(rùn)為3萬(wàn)元.

付款方式

分3期

分6期

分9期

分12期

頻數(shù)

20

20

(1)若以上表計(jì)算出的頻率近似替代概率,從該店采用分期付款購(gòu)車的顧客(數(shù)量較大)中隨機(jī)抽取3為顧客,求事件:“至多有1位采用分6期付款“的概率

(2)按分層抽樣方式從這100為顧客中抽取5人,再?gòu)某槿〉?人中隨機(jī)抽取3人,記該店在這3人身上賺取的總利潤(rùn)為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校高二年級(jí)舉辦了一次數(shù)學(xué)史知識(shí)競(jìng)賽活動(dòng),共有名學(xué)生參加了這次競(jìng)賽.為了解本次競(jìng)賽的成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分均為整數(shù),滿分為分)進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果見下表.請(qǐng)你根據(jù)頻率分布表解答下列問(wèn)題:

1)填出頻率分布表中的空格;

2)為鼓勵(lì)更多的學(xué)生了解數(shù)學(xué)史知識(shí),成績(jī)不低于分的同學(xué)能獲獎(jiǎng),請(qǐng)估計(jì)在參加的名學(xué)生中大概有多少名學(xué)生獲獎(jiǎng)?

3)在上述統(tǒng)計(jì)數(shù)據(jù)的分析中有一項(xiàng)計(jì)算見算法流程圖,求輸出的的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出以下命題:

①雙曲線的漸近線方程為y=±x;

②命題p:“xR,sinx+≥2”是真命題;

③已知線性回歸方程為=3+2x,當(dāng)變量x增加2個(gè)單位,其預(yù)報(bào)值平均增加4個(gè)單位;

④設(shè)隨機(jī)變量ξ服從正態(tài)分布N(0,1),若P(ξ>1)=0.2,則P(-1<ξ<0)=0.6;

⑤設(shè),則

則正確命題的序號(hào)為________(寫出所有正確命題的序號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案