【題目】已知函數(shù)(a∈R).
(1)討論y=f(x)的單調(diào)性;
(2)若函數(shù)f(x)有兩個(gè)不同零點(diǎn)x1,x2,求實(shí)數(shù)a的范圍并證明.
【答案】(1)見解析;(2),證明見解析
【解析】
(1)先求得函數(shù)的單調(diào)區(qū)間,然后求函數(shù)的導(dǎo)數(shù),對(duì)分成兩種情況,分類討論函數(shù)的單調(diào)區(qū)間.(2)令,分離常數(shù),構(gòu)造函數(shù),利用導(dǎo)數(shù)求得的單調(diào)區(qū)間和最大值,結(jié)合圖像求得的取值范圍.構(gòu)造函數(shù)(),利用導(dǎo)數(shù)證得在成立,從而證得在上成立.根據(jù)的單調(diào)性證得.
函數(shù)的定義域?yàn)?/span>
當(dāng)時(shí),,函數(shù)在上為增函數(shù);
當(dāng)時(shí),,,有,
在有,
即,
綜上:當(dāng)時(shí),函數(shù)在上為增函數(shù);
當(dāng)時(shí),.
(2)有兩個(gè)不同的零點(diǎn),即有兩個(gè)不同的根,
即
即 有兩個(gè)不同的交點(diǎn);
,,
,當(dāng)時(shí),
故.
由上設(shè)
令()
當(dāng)時(shí),,故在上為增函數(shù),
,從而有,
即,而
則,又因?yàn)?/span>
所以,
又,,
故,即證.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線,斜率為的直線交拋物線于,兩點(diǎn),當(dāng)直線過(guò)點(diǎn)時(shí),以為直徑的圓與直線相切.
(1)求拋物線的方程;
(2)與平行的直線交拋物線于,兩點(diǎn),若平行線,之間的距離為,且的面積是面積的倍,求和的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的定義域?yàn)?/span>,且對(duì)任意實(shí)數(shù)恒有(且)成立.
(1)求函數(shù)的解析式;
(2)討論在上的單調(diào)性,并用定義加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:已知四棱錐P—ABCD的底面ABCD是平行四邊形,PA⊥面ABCD,M是AD的中點(diǎn),N是PC的中點(diǎn).
(1)求證:MN∥面PAB;
(2)若平面PMC⊥面PAD,求證:CM⊥AD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的右焦點(diǎn)為,坐標(biāo)原點(diǎn)為.橢圓的動(dòng)弦過(guò)右焦點(diǎn)且不垂直于坐標(biāo)軸, 的中點(diǎn)為,過(guò)且垂直于線段的直線交射線于點(diǎn)
(I)證明:點(diǎn)在直線上;
(Ⅱ)當(dāng)四邊形是平行四邊形時(shí),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(是正常數(shù))上有兩點(diǎn)、,焦點(diǎn),
甲:;
乙:;
丙:;
。.
以上是“直線經(jīng)過(guò)焦點(diǎn)”的充要條件有幾個(gè)( 。
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某品牌汽車的店,對(duì)最近100份分期付款購(gòu)車情況進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)情況如下表所示.已知分9期付款的頻率為0.4;該店經(jīng)銷一輛該品牌汽車,若顧客分3期付款,其利潤(rùn)為1萬(wàn)元;分6期或9期付款,其利潤(rùn)為2萬(wàn)元;分12期付款,其利潤(rùn)為3萬(wàn)元.
付款方式 | 分3期 | 分6期 | 分9期 | 分12期 |
頻數(shù) | 20 | 20 |
(1)若以上表計(jì)算出的頻率近似替代概率,從該店采用分期付款購(gòu)車的顧客(數(shù)量較大)中隨機(jī)抽取3為顧客,求事件:“至多有1位采用分6期付款“的概率;
(2)按分層抽樣方式從這100為顧客中抽取5人,再?gòu)某槿〉?人中隨機(jī)抽取3人,記該店在這3人身上賺取的總利潤(rùn)為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校高二年級(jí)舉辦了一次數(shù)學(xué)史知識(shí)競(jìng)賽活動(dòng),共有名學(xué)生參加了這次競(jìng)賽.為了解本次競(jìng)賽的成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分均為整數(shù),滿分為分)進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果見下表.請(qǐng)你根據(jù)頻率分布表解答下列問(wèn)題:
(1)填出頻率分布表中的空格;
(2)為鼓勵(lì)更多的學(xué)生了解“數(shù)學(xué)史”知識(shí),成績(jī)不低于分的同學(xué)能獲獎(jiǎng),請(qǐng)估計(jì)在參加的名學(xué)生中大概有多少名學(xué)生獲獎(jiǎng)?
(3)在上述統(tǒng)計(jì)數(shù)據(jù)的分析中有一項(xiàng)計(jì)算見算法流程圖,求輸出的的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出以下命題:
①雙曲線的漸近線方程為y=±x;
②命題p:“x∈R,sinx+≥2”是真命題;
③已知線性回歸方程為=3+2x,當(dāng)變量x增加2個(gè)單位,其預(yù)報(bào)值平均增加4個(gè)單位;
④設(shè)隨機(jī)變量ξ服從正態(tài)分布N(0,1),若P(ξ>1)=0.2,則P(-1<ξ<0)=0.6;
⑤設(shè),則
則正確命題的序號(hào)為________(寫出所有正確命題的序號(hào)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com