【題目】某淘寶店經(jīng)過對(duì)春節(jié)七天假期的消費(fèi)者進(jìn)行統(tǒng)計(jì),發(fā)現(xiàn)在金額不超過1000元的消費(fèi)者中男女比例為,該店按此比例抽取了100名消費(fèi)者進(jìn)行進(jìn)一步分析,得到下表女性消費(fèi)情況:

消費(fèi)金額(元)

人數(shù)

5

10

15

47

3

男性消費(fèi)情況:

消費(fèi)金額(元)

人數(shù)

2

3

10

3

2

若消費(fèi)金額不低于600元的網(wǎng)購(gòu)者為“網(wǎng)購(gòu)達(dá)人”,低于600元的網(wǎng)購(gòu)者為“非網(wǎng)購(gòu)達(dá)人”

(1)分別計(jì)算女性和男性消費(fèi)的平均數(shù),并判斷平均消費(fèi)水平高的一方“網(wǎng)購(gòu)達(dá)人”出手是否更闊綽?

(2)根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫如下列聯(lián)表,并回答能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為“是否為‘網(wǎng)購(gòu)達(dá)人’與性別有關(guān)”.

女性

男性

合計(jì)

“網(wǎng)購(gòu)達(dá)人”

“非網(wǎng)購(gòu)達(dá)人”

合計(jì)

附: .

【答案】(1) 女消費(fèi)者消費(fèi)平均數(shù)為582.5,男消費(fèi)者消費(fèi)平均數(shù)為500,“平均消費(fèi)水平”高的一方“網(wǎng)購(gòu)達(dá)人”出手不一定更闊綽;

(2)列聯(lián)表略,可以認(rèn)為“是否為‘網(wǎng)購(gòu)達(dá)人’與性別有關(guān)”

【解析】試題分析:

(1)由題意計(jì)算可得女消費(fèi)者消費(fèi)平均數(shù)為.男消費(fèi)者消費(fèi)平均數(shù)為.則“平均消費(fèi)水平”高的一方“網(wǎng)購(gòu)達(dá)人”出手不一定更闊綽;

(2)結(jié)合題中所給數(shù)據(jù)完成列聯(lián)表,計(jì)算可得,

所以在犯錯(cuò)誤的概率不超過的前提下可以認(rèn)為“是否為‘網(wǎng)購(gòu)達(dá)人’性別有關(guān)”.

試題解析:

(1)女消費(fèi)者消費(fèi)平均數(shù)

.

男消費(fèi)者消費(fèi)平均數(shù).

雖然女消費(fèi)者消費(fèi)水平較高,但“女網(wǎng)購(gòu)達(dá)人”平均消費(fèi)水平(為712),低于“男網(wǎng)購(gòu)達(dá)人”平均消費(fèi)水平(為790),所以“平均消費(fèi)水平”高的一方“網(wǎng)購(gòu)達(dá)人”出手不一定更闊綽.

(2) 列聯(lián)表如下所示:

假設(shè)“是否為‘網(wǎng)購(gòu)達(dá)人’與性別無(wú)關(guān)”,

,

因?yàn)?/span>

所以在犯錯(cuò)誤的概率不超過的前提下可以認(rèn)為“是否為‘網(wǎng)購(gòu)達(dá)人’與性別有關(guān)”.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合U={x∈N|0<x≤8},S={1,2,4,5},T={3,5,7},則S∩(CUT)=( 。
A.{1,2,4}
B.{1,2,3,4,5,7}
C.{1,2}
D.{1,2,4,5,6,8}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三期中考試后,數(shù)學(xué)教師對(duì)本次全部數(shù)學(xué)成績(jī)按進(jìn)行分層抽樣,隨機(jī)抽取了20名學(xué)生的成績(jī)?yōu)闃颖,成?jī)用莖葉圖記錄如圖所示,但部分?jǐn)?shù)據(jù)不小心丟失,同時(shí)得到如下表所示的頻率分布表:

(Ⅰ)求表中,的值,并估計(jì)這次考試全校高三數(shù)學(xué)成績(jī)的及格率(成績(jī)?cè)?/span>內(nèi)為及格);

(Ⅱ)設(shè)莖葉圖中成績(jī)?cè)?/span>范圍內(nèi)的樣本的中位數(shù)為,若從成績(jī)?cè)?/span>范圍內(nèi)的樣品中每次隨機(jī)抽取1個(gè),每次取出不放回,連續(xù)取兩次,求取出兩個(gè)樣本中恰好一個(gè)是數(shù)字的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】雙曲線 =1(a>0,b>0)的離心率為2,坐標(biāo)原點(diǎn)到直線AB的距離為 ,其中A(a,0),B(0,﹣b).
(1)求雙曲線的方程;
(2)若B1是雙曲線虛軸在y軸正半軸上的端點(diǎn),過B作直線與雙曲線交于M,N兩點(diǎn),求B1M⊥B1N時(shí),直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)討論的單調(diào)性;

(2)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線C: =1的離心率為 ,點(diǎn)( ,0)是雙曲線的一個(gè)頂點(diǎn).
(1)求雙曲線的方程;
(2)經(jīng)過的雙曲線右焦點(diǎn)F2作傾斜角為30°直線l,直線l與雙曲線交于不同的A,B兩點(diǎn),求AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位生產(chǎn)A、B兩種產(chǎn)品,需要資金和場(chǎng)地,生產(chǎn)每噸A種產(chǎn)品和生產(chǎn)每噸B種產(chǎn)品所需資金和場(chǎng)地的數(shù)據(jù)如表所示:

資源
產(chǎn)品

資金(萬(wàn)元)

場(chǎng)地(平方米)

A

2

100

B

35

50

現(xiàn)有資金12萬(wàn)元,場(chǎng)地400平方米,生產(chǎn)每噸A種產(chǎn)品可獲利潤(rùn)3萬(wàn)元;生產(chǎn)每噸B種產(chǎn)品可獲利潤(rùn)2萬(wàn)元,分別用x,y表示計(jì)劃生產(chǎn)A、B兩種產(chǎn)品的噸數(shù).
(1)用x,y列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(2)問A、B兩種產(chǎn)品應(yīng)各生產(chǎn)多少噸,才能產(chǎn)生最大的利潤(rùn)?并求出此最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=,an+1=3an-1(n∈N*).

(1)若數(shù)列{bn}滿足bn=an-,求證:{bn}是等比數(shù)列;

(2)求數(shù)列{an}的前n項(xiàng)和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C對(duì)應(yīng)的邊分別為a,b,c(a≤b≤c),且bcosC+ccosB=2asinA. (Ⅰ)求角A;
(Ⅱ)求證: ;
(Ⅲ)若a=b,且BC邊上的中線AM長(zhǎng)為 ,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案