【題目】設(shè)集合U={x∈N|0<x≤8},S={1,2,4,5},T={3,5,7},則S∩(CUT)=( 。
A.{1,2,4}
B.{1,2,3,4,5,7}
C.{1,2}
D.{1,2,4,5,6,8}
【答案】A
【解析】因為U={1,2,3,4,5,6,7,8},CUT={1,2,4,6,8},所以S∩(CUT)={1,2,4},
故選A
【考點精析】通過靈活運用集合的交集運算和交、并、補集的混合運算,掌握交集的性質(zhì):(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,則AB,反之也成立;求集合的并、交、補是集合間的基本運算,運算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進而用集合語言表達,增強數(shù)形結(jié)合的思想方法即可以解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,正三角形ABC的邊BC所在直線斜率是0,則AC、AB所在的直線斜率之和為( )
A.-
B.0
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,從氣球A上測得正前方的河流的兩岸B,C的俯角分別為67°,30°,此時氣球的高是46m,則河流的寬度BC約等于m.(用四舍五入法將結(jié)果精確到個位.參考數(shù)據(jù):sin67°≈0.92,cos67°≈0.39,sin37°≈0.60,cos37°≈0.80, ≈1.73)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 經(jīng)過點,左右焦點分別為、,圓與直線相交所得弦長為2.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)是橢圓上不在軸上的一個動點, 為坐標(biāo)原點,過點作的平行線交橢圓于、兩個不同的點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右兩個焦點分別為,離心率,短軸長為2.
(1)求橢圓的方程;
(2)點為橢圓上的一動點(非長軸端點),的延長線與橢圓交于點, 的延長線與橢圓交于點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題p:關(guān)于x的方程x2+ax+2=0無實根,命題q:函數(shù)f(x)=logax在(0,+∞)上單調(diào)遞增,若“p∧q”為假命題,“p∨q”真命題,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,已知AB=2,cosB= (Ⅰ)若AC=2 ,求sinC的值;
(Ⅱ)若點D在邊AC上,且AD=2DC,BD= ,求BC的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某淘寶店經(jīng)過對春節(jié)七天假期的消費者進行統(tǒng)計,發(fā)現(xiàn)在金額不超過1000元的消費者中男女比例為,該店按此比例抽取了100名消費者進行進一步分析,得到下表女性消費情況:
消費金額(元) | |||||
人數(shù) | 5 | 10 | 15 | 47 | 3 |
男性消費情況:
消費金額(元) | |||||
人數(shù) | 2 | 3 | 10 | 3 | 2 |
若消費金額不低于600元的網(wǎng)購者為“網(wǎng)購達人”,低于600元的網(wǎng)購者為“非網(wǎng)購達人”
(1)分別計算女性和男性消費的平均數(shù),并判斷平均消費水平高的一方“網(wǎng)購達人”出手是否更闊綽?
(2)根據(jù)以上統(tǒng)計數(shù)據(jù)填寫如下列聯(lián)表,并回答能否在犯錯誤的概率不超過的前提下認為“是否為‘網(wǎng)購達人’與性別有關(guān)”.
女性 | 男性 | 合計 | |
“網(wǎng)購達人” | |||
“非網(wǎng)購達人” | |||
合計 |
附: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com