【題目】現(xiàn)安排甲乙丙丁戊5名學(xué)生分別擔(dān)任語(yǔ)文、數(shù)學(xué)、英語(yǔ)、物理、化學(xué)學(xué)科的科代表,要求甲不當(dāng)語(yǔ)文科代表,乙不當(dāng)數(shù)學(xué)科代表,若丙當(dāng)物理科代表則丁必須當(dāng)化學(xué)科代表,則不同的選法共有多少種( )

A. 53 B. 67 C. 85 D. 91

【答案】B

【解析】丙當(dāng)物理課代表則丁必須當(dāng)化學(xué)課代表,以丙進(jìn)行分類 第一類,當(dāng)丙當(dāng)物理課代表時(shí),丁必須當(dāng)化學(xué)課代表,再根據(jù)甲當(dāng)數(shù)學(xué)課代表,乙戊可以當(dāng)英語(yǔ)和語(yǔ)文中的任一課,有種,當(dāng)甲不當(dāng)數(shù)學(xué)課代表,甲只能當(dāng)英語(yǔ)課代表,乙只能當(dāng)語(yǔ)文課代表,戊當(dāng)數(shù)學(xué)課代表,有種,共計(jì)種, 第二類,當(dāng)丙不當(dāng)物理課代表時(shí),分四類丙為語(yǔ)文課代表時(shí),乙只能從英語(yǔ)、物理和U學(xué)中選擇一課,剩下的甲丁戊任意排給剩下的三
課,有種,②丙為數(shù)學(xué)課代表時(shí),甲只能從英語(yǔ)、物理和化學(xué)課,剩下的乙丁戊任意排給剩下的三課,有種,丙為英語(yǔ)課代表時(shí),繼續(xù)分類,甲當(dāng)數(shù)學(xué)課代表時(shí),其他三位同學(xué)任意當(dāng)有種,當(dāng)甲不當(dāng)數(shù)學(xué)課代表,甲只能從物理和化學(xué)課中選一課,乙只能從語(yǔ)文和甲選完后的剰下的一課中選一課,丁和戊做剰下的兩課,有,共計(jì)丙為化學(xué)課代表時(shí),同的選法一樣有種,根據(jù)分類計(jì)數(shù)原理得,不同的選法共有故選.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1是否存在實(shí)數(shù)使函數(shù)是奇函數(shù)?并說明理由;

21的條件下,當(dāng)時(shí) 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,以上頂點(diǎn)和右焦點(diǎn)為直徑端點(diǎn)的圓與直線相切.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)對(duì)于直線和點(diǎn),橢圓上是否存在不同的兩點(diǎn)關(guān)于直線對(duì)稱,且,若存在實(shí)數(shù)的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中,若, 處切線的斜率為

(1)求函數(shù)的解析式及其單調(diào)區(qū)間;

(2)若實(shí)數(shù)滿足,且對(duì)于任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,平面 平面, , , , 分別為, 的中點(diǎn).

1)求證: 平面

2)求證:平面 平面;

3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在剛剛結(jié)束的五市聯(lián)考中,某校對(duì)甲、乙兩個(gè)文科班的數(shù)學(xué)成績(jī)進(jìn)行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀,成績(jī)統(tǒng)計(jì)后,得到如下的列聯(lián)表,且已知在甲、乙兩個(gè)文科班全部110人中隨機(jī)抽取1人為優(yōu)秀的概率為.

班級(jí)

優(yōu)秀

非優(yōu)秀

合計(jì)

甲班

18

乙班

43

合計(jì)

110

(1)請(qǐng)完成上面的列聯(lián)表;

(2)請(qǐng)問:是否有的把握認(rèn)為“數(shù)學(xué)成績(jī)與所在的班級(jí)有關(guān)系”?

(3)用分層抽樣的方法從甲、乙兩個(gè)文科班的數(shù)學(xué)成績(jī)優(yōu)秀的學(xué)生中抽取5名學(xué)生進(jìn)行調(diào)研,然后再?gòu)倪@5名學(xué)生中隨機(jī)抽取2名學(xué)生進(jìn)行談話,求抽到的2名學(xué)生中至少有1名乙班學(xué)生的概率.

參考公式: (其中)

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校的一個(gè)社會(huì)實(shí)踐調(diào)查小組,在對(duì)該校學(xué)生的良好“用眼習(xí)慣”的調(diào)查中,隨機(jī)發(fā)放了120分問卷.對(duì)收回的100份有效問卷進(jìn)行統(tǒng)計(jì),得到如下列聯(lián)表:

做不到科學(xué)用眼

能做到科學(xué)用眼

合計(jì)

45

10

55

30

15

45

合計(jì)

75

25

100

(1)現(xiàn)按女生是否能做到科學(xué)用眼進(jìn)行分層,從45份女生問卷中抽取了6份問卷,從這6份問卷中再隨機(jī)抽取3份,并記其中能做到科學(xué)用眼的問卷的份數(shù),試求隨機(jī)變量的分布列和數(shù)學(xué)期望;

(2)若在犯錯(cuò)誤的概率不超過的前提下認(rèn)為良好“用眼習(xí)慣”與性別有關(guān),那么根據(jù)臨界值表,最精確的的值應(yīng)為多少?請(qǐng)說明理由.

附:獨(dú)立性檢驗(yàn)統(tǒng)計(jì)量,其中.

獨(dú)立性檢驗(yàn)臨界值表:

0.25

0.15

0.10

0.05

0.025

1.323

2.072

2.706

3.840

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某校歌詠比賽中,甲班、乙班、丙班、丁班均可從、、、四首不同曲目中任選一首.

(1)求甲、乙兩班選擇不同曲目的概率;

(2)設(shè)這四個(gè)班級(jí)總共選取了首曲目,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次抗洪搶險(xiǎn)中,準(zhǔn)備用射擊的方法引爆從橋上游漂流而下的一個(gè)巨大的汽油灌,已知只有5發(fā)子彈,第一次命中只能使汽油流出,第二次命中才能引爆.每次射擊相互獨(dú)立,且命中概率都是,求(1)油罐被引爆的概率;(2)如果引爆或子彈打光則停止射擊,設(shè)射擊次數(shù)為,求的分布列.

查看答案和解析>>

同步練習(xí)冊(cè)答案