【題目】如圖,在三棱錐中,平面 平面, , , 分別為, 的中點(diǎn).

1)求證: 平面

2)求證:平面 平面;

3)求三棱錐的體積.

【答案】(1)證明過(guò)程見(jiàn)解析;(2)證明過(guò)程見(jiàn)解析;(3

【解析】試題分析:(1)通過(guò)中位線的性質(zhì)證明線線平行,再通過(guò)線線平行證明線面平行;(2)通過(guò)證明,進(jìn)而證明平面,再通過(guò)線面垂直證明面面垂直;(3)求三棱錐的體積時(shí),觀察將哪個(gè)面作為底面比較合適,較容易求出,通過(guò)前面兩問(wèn)的鋪墊,發(fā)現(xiàn)將面作為底面較為合適,從而可求解.

試題解析:

1)證明: 分別為, 的中點(diǎn),

,

平面, 平面,

平面.

(2) ,且的中點(diǎn),.

又平面平面

平面,

平面,

平面平面.

(3) 因?yàn)?/span>,且,

所以

,又, 所以

由(2)知: 平面,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四名同學(xué)根據(jù)各自的樣本數(shù)據(jù)研究變量之間的相關(guān)關(guān)系,并求得回歸直線方程和相關(guān)系數(shù),分別得到以下四個(gè)結(jié)論:

其中,一定不正確的結(jié)論序號(hào)是( )

A. ②③ B. ①④ C. ①②③ D. ②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知橢圓 的離心率為, 為橢圓的右焦點(diǎn), , .

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)為原點(diǎn), 為橢圓上一點(diǎn), 的中點(diǎn)為,直線與直線交于點(diǎn),過(guò),交直線于點(diǎn),求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,,的中點(diǎn).

(1),求證:;

(2),且,點(diǎn)在線段上,試確定點(diǎn)的位置,使二面角大小為,并求出的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了分析某個(gè)高三學(xué)生的學(xué)習(xí)狀態(tài),對(duì)其下一階段的學(xué)習(xí)提供指導(dǎo)性建議.現(xiàn)對(duì)他前次考試的數(shù)學(xué)成績(jī)、物理成績(jī)進(jìn)行分析.下面是該生次考試的成績(jī).

數(shù)學(xué)

108

103

137

112

128

120

132

物理

74

71

88

76

84

81

86

(Ⅰ)他的數(shù)學(xué)成績(jī)與物理成績(jī)哪個(gè)更穩(wěn)定?請(qǐng)給出你的說(shuō)明;

(Ⅱ)已知該生的物理成績(jī)與數(shù)學(xué)成績(jī)是線性相關(guān)的,求物理成績(jī)與數(shù)學(xué)成績(jī)的回歸直線方程

(Ⅲ)若該生的物理成績(jī)達(dá)到90分,請(qǐng)你估計(jì)他的數(shù)學(xué)成績(jī)大約是多少?

(附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)安排甲乙丙丁戊5名學(xué)生分別擔(dān)任語(yǔ)文、數(shù)學(xué)、英語(yǔ)、物理、化學(xué)學(xué)科的科代表,要求甲不當(dāng)語(yǔ)文科代表,乙不當(dāng)數(shù)學(xué)科代表,若丙當(dāng)物理科代表則丁必須當(dāng)化學(xué)科代表,則不同的選法共有多少種( )

A. 53 B. 67 C. 85 D. 91

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,過(guò)點(diǎn)的直線的參數(shù)方程為為參數(shù)),直線與曲線相交于兩點(diǎn).

1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;

2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩企業(yè)生產(chǎn)同一種型號(hào)零件,按規(guī)定該型號(hào)零件的質(zhì)量指標(biāo)值落在內(nèi)為優(yōu)質(zhì)品.從兩個(gè)企業(yè)生產(chǎn)的零件中各隨機(jī)抽出了500件,測(cè)量這些零件的質(zhì)量指標(biāo)值,得結(jié)果如下表:

甲企業(yè):

乙企業(yè):

(1)已知甲企業(yè)的500件零件質(zhì)量指標(biāo)值的樣本方差,該企業(yè)生產(chǎn)的零件質(zhì)量指標(biāo)值服從正態(tài)分布,其中近似為質(zhì)量指標(biāo)值的樣本平均數(shù)(注:求時(shí),同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表),近似為樣本方差,試根據(jù)該企業(yè)的抽樣數(shù)據(jù),估計(jì)所生產(chǎn)的零件中,質(zhì)量指標(biāo)值不低于71.92的產(chǎn)品的概率.(精確到0.001)

(2)由以上統(tǒng)計(jì)數(shù)據(jù)完成下面列聯(lián)表,并問(wèn)能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下,認(rèn)為“兩個(gè)分廠生產(chǎn)的零件的質(zhì)量有差異”.

附注:

參考數(shù)據(jù): ,

參考公式: ,

.

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在等腰直角三角形中, 的中點(diǎn),點(diǎn)上,且,現(xiàn)沿折起到的位置,使,點(diǎn)上,且.

(1)求證: 平面;

(2)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案