【題目】如圖,在四棱錐中,底面為菱形,,的中點.

(1),求證:;

(2),且,點在線段上,試確定點的位置,使二面角大小為,并求出的值.

【答案】1證明見解析2.

【解析】

試題分析:1,的中點,得,又由底面為菱形,根據(jù)菱形的性質(zhì),證得,進而證得,即可證明;2為坐標原點,分別以、軸、軸、軸建立空間直角坐標系,得平面和平面的一個法向量,根據(jù)二面角大小為,利用向量的運算,即可求解求出的值.

試題解析:⑴∵,的中點,,又底面為菱形,,,又,,又,;

⑵∵,,

,為坐標原點,分別以、軸、軸、軸建立空間直角坐標系如圖.

,,,設,

所以,平面的一個法向量是,

設平面的一個法向量為,

所以,.

,

由二面角大小為,可得:,解得,此時.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的右焦點為,右頂點為,設離心率為,且滿足,其中為坐標原點.

(Ⅰ)求橢圓的方程;

(Ⅱ)過點(0,1)的直線與橢圓交于,兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2016年時紅軍長征勝利80周年,某市電視臺舉辦紀念紅軍長征勝利80周年知識問答,宣傳長征精神.首先在甲、乙、丙、丁四個不同的公園進行支持簽名活動,其次在各公園簽名的人中按分層抽樣的方式抽取10名幸運之星,每人獲得一個紀念品,其數(shù)據(jù)表格如下:

(Ⅰ)求此活動中各公園幸運之星的人數(shù);

(Ⅱ)從乙和丙公園的幸運之星中任選兩人接受電視臺記者的采訪,求這兩人均來自乙公園的概率;

(Ⅲ)電視臺記者對乙公園的簽名人進行了是否有興趣研究“紅軍長征”歷史的問卷調(diào)查,統(tǒng)計結果如下(單位:人):

據(jù)此判斷能否在犯錯誤的概率不超過0.01的前提下認為有興趣研究“紅軍長征”歷史與性別有關.

附臨界值表及公式: ,其中

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率,以上頂點和右焦點為直徑端點的圓與直線相切.

(1)求橢圓的標準方程;

(2)對于直線和點,橢圓上是否存在不同的兩點關于直線對稱,且,若存在實數(shù)的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】用秦九韶算法求多項式f(x)=x6-5x5+6x4+x2+0.3x+2當x=-2時的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中,若, 處切線的斜率為

(1)求函數(shù)的解析式及其單調(diào)區(qū)間;

(2)若實數(shù)滿足,且對于任意恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,平面 平面, , , 分別為, 的中點.

1)求證: 平面;

2)求證:平面 平面

3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校的一個社會實踐調(diào)查小組,在對該校學生的良好“用眼習慣”的調(diào)查中,隨機發(fā)放了120分問卷.對收回的100份有效問卷進行統(tǒng)計,得到如下列聯(lián)表:

做不到科學用眼

能做到科學用眼

合計

45

10

55

30

15

45

合計

75

25

100

(1)現(xiàn)按女生是否能做到科學用眼進行分層,從45份女生問卷中抽取了6份問卷,從這6份問卷中再隨機抽取3份,并記其中能做到科學用眼的問卷的份數(shù),試求隨機變量的分布列和數(shù)學期望;

(2)若在犯錯誤的概率不超過的前提下認為良好“用眼習慣”與性別有關,那么根據(jù)臨界值表,最精確的的值應為多少?請說明理由.

附:獨立性檢驗統(tǒng)計量,其中.

獨立性檢驗臨界值表:

0.25

0.15

0.10

0.05

0.025

1.323

2.072

2.706

3.840

5.024

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在上的函數(shù)對任意的,滿足條件: ,且當時, .

(1)求的值;

(2)證明:函數(shù)上的單調(diào)增函數(shù);

(3)解關于的不等式.

查看答案和解析>>

同步練習冊答案