【題目】如圖所示,在等腰直角三角形中, 的中點,點上,且,現(xiàn)沿折起到的位置,使,點上,且.

(1)求證: 平面;

(2)求二面角的余弦值.

【答案】(1)證明見解析;(2) .

【解析】試題分析:

(1)建立空間直角坐標(biāo)系,結(jié)合直線的方向向量和平面的法向量即可證得平面;

(2)求得平面的法向量,結(jié)合夾角公式可得二面角的余弦值是.

試題解析:

(1)因為 ,所以建立以點為原點,分別以所在直線為軸的空間直角坐標(biāo)系,如圖所示.

, , , .

易知為平面的一個法向量,

又因為,所以,

平面,所以平面.

(2)由(1)知, ,

設(shè)平面的法向量為,

,即.

,解得為平面的一個法向量,

又因為為平面的一個法向量,所以

所以二面角的余弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,平面 平面, , , , 分別為, 的中點.

1)求證: 平面;

2)求證:平面 平面;

3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), (為自然對數(shù)的底數(shù)).

(1)設(shè)曲線處的切線為,若與點的距離為,求的值;

(2)若對于任意實數(shù), 恒成立,試確定的取值范圍;

(3)當(dāng)時,函數(shù)上是否存在極值?若存在,請求出極值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的函數(shù)對任意的,滿足條件: ,且當(dāng)時, .

(1)求的值;

(2)證明:函數(shù)上的單調(diào)增函數(shù);

(3)解關(guān)于的不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是自然對數(shù)的底數(shù)),

(1)求曲線在點處的切線方程;

(2)求的單調(diào)區(qū)間;

(3)設(shè),其中的導(dǎo)函數(shù),證明:對任意,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次抗洪搶險中,準(zhǔn)備用射擊的方法引爆從橋上游漂流而下的一個巨大的汽油灌,已知只有5發(fā)子彈,第一次命中只能使汽油流出,第二次命中才能引爆.每次射擊相互獨立,且命中概率都是,求(1)油罐被引爆的概率;(2)如果引爆或子彈打光則停止射擊,設(shè)射擊次數(shù)為,求的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校計劃面向高一年級1240名學(xué)生開設(shè)校本選修課程,為確保工作的順利實施,按性別進(jìn)行分層抽樣,現(xiàn)抽取124名學(xué)生對社會科學(xué)類、自然科學(xué)類這兩大類校本選修課程進(jìn)行選課意向調(diào)查,其中男生有65人.在這124名學(xué)生中選修社會科學(xué)類的男生有22人、女生有40人.

(1)根據(jù)以上數(shù)據(jù)完成下列列聯(lián)表;

(2)判斷能否有99.9%的把握認(rèn)為科類的選修與性別有關(guān)?

附: ,其中

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,并在兩坐標(biāo)系中取相同的長度單位.已知曲線的極坐標(biāo)方程為,直線的參數(shù)方程為

為參數(shù), 為直線的傾斜角).

(1)寫出直線的普通方程和曲線的直角坐標(biāo)方程;

(2)若直線與曲線有唯一的公共點,求角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱臺形玻璃容器Ⅱ的高均為32cm,容器Ⅰ的底面對角線AC的長為10cm,容器Ⅱ的兩底面對角線,的長分別為14cm62cm.分別在容器Ⅰ和容器Ⅱ中注入水,水深均為12cm現(xiàn)有一根玻璃棒l其長度為40cm.(容器厚度、玻璃棒粗細(xì)均忽略不計)

1)將放在容器Ⅰ中,的一端置于點A處,另一端置于側(cè)棱上,沒入水中部分的長度;

(2)將放在容器Ⅱ中,的一端置于點E處,另一端置于側(cè)棱上,求沒入水中部分的長度.

查看答案和解析>>

同步練習(xí)冊答案