【題目】已知函數(shù), (為自然對數(shù)的底數(shù)).
(1)設曲線在處的切線為,若與點的距離為,求的值;
(2)若對于任意實數(shù), 恒成立,試確定的取值范圍;
(3)當時,函數(shù)在上是否存在極值?若存在,請求出極值;若不存在,請說明理由.
【答案】(1) 或 (2) (3)不存在
【解析】試題分析:
(1)該問切點橫坐標已知,則利用切點在曲線上,帶入曲線即可得到切點的縱坐標,對進行求導并得到在切點處的導函數(shù)值即為切線的斜率,有切線的斜率,切線又過切點,利用直線的點斜式即可求的切線的方程,利用點到直線的距離公式結(jié)合條件點到切線的距離為即可求的參數(shù)的值.
(2)該問為恒成立問題可以考慮分離參數(shù)法,即把參數(shù)a與x進行分離得到,則,再利用函數(shù)的導函數(shù)研究函數(shù)在區(qū)間的最大值,即可求的a的取值范圍.
(3)根據(jù)極值的定義,函數(shù)在區(qū)間有零點且在零點附近的符號不同,求導可得,設,求求導可以得到的導函數(shù)在區(qū)間恒為正數(shù),則函數(shù)在區(qū)間上是單調(diào)遞增,即可得到函數(shù)進而得到恒成立,即在區(qū)間上沒有零點,進而函數(shù)沒有極值.
試題解析:
(1), .
在處的切線斜率為, 1分
∴切線的方程為,即. 3分
又切線與點距離為,所以,
解之得, 或5分
(2)∵對于任意實數(shù)恒成立,
∴若,則為任意實數(shù)時, 恒成立; 6分
若 恒成立,即,在上恒成立, 7分
設則, 8分
當時, ,則在上單調(diào)遞增;
當時, ,則在上單調(diào)遞減;
所以當時, 取得最大值, , 9分
所以的取值范圍為.
綜上,對于任意實數(shù)恒成立的實數(shù)的取值范圍為. 10分
(3)依題意, ,
所以, 2分
設,則,當,
故在上單調(diào)增函數(shù),因此在上的最小值為,
即, 12分
又所以在上, ,
即在上不存在極值. 14分
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓: 的離心率為, 為橢圓的右焦點, , .
(Ⅰ)求橢圓的方程;
(Ⅱ)設為原點, 為橢圓上一點, 的中點為,直線與直線交于點,過作,交直線于點,求證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,已知曲線的極坐標方程為,過點的直線的參數(shù)方程為(為參數(shù)),直線與曲線相交于兩點.
(1)寫出曲線的直角坐標方程和直線的普通方程;
(2)若,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩企業(yè)生產(chǎn)同一種型號零件,按規(guī)定該型號零件的質(zhì)量指標值落在內(nèi)為優(yōu)質(zhì)品.從兩個企業(yè)生產(chǎn)的零件中各隨機抽出了500件,測量這些零件的質(zhì)量指標值,得結(jié)果如下表:
甲企業(yè):
乙企業(yè):
(1)已知甲企業(yè)的500件零件質(zhì)量指標值的樣本方差,該企業(yè)生產(chǎn)的零件質(zhì)量指標值服從正態(tài)分布,其中近似為質(zhì)量指標值的樣本平均數(shù)(注:求時,同一組數(shù)據(jù)用該區(qū)間的中點值作代表),近似為樣本方差,試根據(jù)該企業(yè)的抽樣數(shù)據(jù),估計所生產(chǎn)的零件中,質(zhì)量指標值不低于71.92的產(chǎn)品的概率.(精確到0.001)
(2)由以上統(tǒng)計數(shù)據(jù)完成下面列聯(lián)表,并問能否在犯錯誤的概率不超過0.01的前提下,認為“兩個分廠生產(chǎn)的零件的質(zhì)量有差異”.
附注:
參考數(shù)據(jù): ,
參考公式: , ,
.
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知(, )展開式的前三項的二項式系數(shù)之和為16,所有項的系數(shù)之和為1.
(1)求和的值;
(2)展開式中是否存在常數(shù)項?若有,求出常數(shù)項;若沒有,請說明理由;
(3)求展開式中二項式系數(shù)最大的項.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近幾年來,我國許多地區(qū)經(jīng)常出現(xiàn)干旱現(xiàn)象,為抗旱經(jīng)常要進行人工降雨,現(xiàn)由天氣預報得知,某地在未來5天的指定時間的降雨概率是:前3天均為,后2天均為,5天內(nèi)任何一天的該指定時間沒有降雨,則在當天實行人工降雨,否則,當天不實施人工降雨.
(1)求至少有1天需要人工降雨的概率;
(2)求不需要人工降雨的天數(shù)的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了弘揚民族文化,某校舉行了“我愛國學,傳誦經(jīng)典”考試,并從中隨機抽取了100名考生的成績(得分均為整數(shù),滿足100分)進行統(tǒng)計制表,其中成績不低于80分的考生被評為優(yōu)秀生,請根據(jù)頻率分布表中所提供的數(shù)據(jù),用頻率估計概率,回答下列問題.
分組 | 頻數(shù) | 頻率 |
5 | 0.05 | |
0.20 | ||
35 | ||
25 | 0.25 | |
15 | 0.15 | |
合計 | 100 | 1.00 |
(1)求的值及隨機抽取一考生恰為優(yōu)秀生的概率;
(2)按頻率分布表中的成績分組,采用分層抽樣抽取20人參加學校的“我愛國學”宣傳活動,求其中優(yōu)秀生的人數(shù);
(3)在第(2)問抽取的優(yōu)秀生中指派2名學生擔任負責人,求至少一人的成績在的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在等腰直角三角形中, , 為的中點,點在上,且,現(xiàn)沿將折起到的位置,使,點在上,且.
(1)求證: 平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知, 是的導函數(shù).
(1)求的極值;
(2)證明:對任意實數(shù),都有恒成立;
(3)若在時恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com