【題目】如圖,已知橢圓 的離心率為 為橢圓的右焦點(diǎn), .

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)為原點(diǎn), 為橢圓上一點(diǎn), 的中點(diǎn)為,直線與直線交于點(diǎn),過,交直線于點(diǎn),求證: .

【答案】(Ⅰ);(Ⅱ)見解析.

【解析】試題分析:(1)由題中條件要得兩個(gè)等式,再由橢圓中的等式關(guān)系可得的值,求得橢圓的方程;

(2)可設(shè)直線的方程,聯(lián)立橢圓方程,由根與系數(shù)的關(guān)系得,所以直線的方程是 .令,得, 得直線的斜率是 ,問題得解.

試題解析:

(Ⅰ)設(shè)橢圓的半焦距為.依題意,得,

解得 , .所以 ,所以橢圓方程

(Ⅱ)解法一:由(Ⅰ)得 .設(shè)的中點(diǎn),

設(shè)直線的方程為: ,將其代入橢圓方程,整理得

,所以 .所以 , ,

.所以直線的斜率是 ,

所以直線的方程是 .令,得

,得直線的斜率是

因?yàn)?/span>,所以直線的斜率為,所以直線

解法二:由(Ⅰ)得 .設(shè),其中

因?yàn)?/span>的中點(diǎn)為,所以 .所以直線的斜率是 ,所以直線的方程是 .令,得

,得直線的斜率是 .因?yàn)橹本的斜率是 ,所以 ,所以 .因?yàn)?,所以

點(diǎn)晴:本題主要考查直線與圓錐曲線位置關(guān)系. 直線和圓錐曲線的位置關(guān)系一方面要體現(xiàn)方程思想,另一方面要結(jié)合已知條件,從圖形角度求解.聯(lián)立直線與圓錐曲線的方程得到方程組,化為一元二次方程后由根與系數(shù)的關(guān)系求解是一個(gè)常用的方法. 涉及弦長的問題中,應(yīng)熟練地利用根與系數(shù)關(guān)系、設(shè)而不求法計(jì)算弦長;涉及垂直關(guān)系時(shí)也往往利用根與系數(shù)關(guān)系、設(shè)而不求法簡化運(yùn)算;涉及過焦點(diǎn)的弦的問題,可考慮用圓錐曲線的定義求解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某港口有一個(gè)泊位,現(xiàn)統(tǒng)計(jì)了某月100艘輪船在該泊位?康臅r(shí)間(單位:小時(shí)),如果停靠時(shí)間不足半小時(shí)按半小時(shí)計(jì)時(shí),超過半小時(shí)不足1小時(shí)按1小時(shí)計(jì)時(shí),以此類推,統(tǒng)計(jì)結(jié)果如表:

?繒r(shí)間

2.5

3

3.5

4

4.5

5

5.5

6

輪船數(shù)量

12

12

17

20

15

13

8

3

(Ⅰ)設(shè)該月100艘輪船在該泊位的平均?繒r(shí)間為小時(shí),求的值;

(Ⅱ)假定某天只有甲、乙兩艘輪船需要在該泊位?小時(shí),且在一晝夜的時(shí)間段中隨機(jī)到達(dá),求這兩艘輪船中至少有一艘在停靠該泊位時(shí)必須等待的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

(2)若,求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2016年時(shí)紅軍長征勝利80周年,某市電視臺(tái)舉辦紀(jì)念紅軍長征勝利80周年知識(shí)問答,宣傳長征精神.首先在甲、乙、丙、丁四個(gè)不同的公園進(jìn)行支持簽名活動(dòng),其次在各公園簽名的人中按分層抽樣的方式抽取10名幸運(yùn)之星,每人獲得一個(gè)紀(jì)念品,其數(shù)據(jù)表格如下:

(Ⅰ)求此活動(dòng)中各公園幸運(yùn)之星的人數(shù);

(Ⅱ)從乙和丙公園的幸運(yùn)之星中任選兩人接受電視臺(tái)記者的采訪,求這兩人均來自乙公園的概率;

(Ⅲ)電視臺(tái)記者對乙公園的簽名人進(jìn)行了是否有興趣研究“紅軍長征”歷史的問卷調(diào)查,統(tǒng)計(jì)結(jié)果如下(單位:人):

據(jù)此判斷能否在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為有興趣研究“紅軍長征”歷史與性別有關(guān).

附臨界值表及公式: ,其中

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓 的離心率為 為橢圓的右焦點(diǎn), , .

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)為原點(diǎn), 為橢圓上一點(diǎn), 的中點(diǎn)為,直線與直線交于點(diǎn),過,交直線于點(diǎn),求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,以上頂點(diǎn)和右焦點(diǎn)為直徑端點(diǎn)的圓與直線相切.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)對于直線和點(diǎn),橢圓上是否存在不同的兩點(diǎn)關(guān)于直線對稱,且,若存在實(shí)數(shù)的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用秦九韶算法求多項(xiàng)式f(x)=x6-5x5+6x4+x2+0.3x+2當(dāng)x=-2時(shí)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,平面 平面, , , 分別為的中點(diǎn).

1)求證: 平面;

2)求證:平面 平面;

3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), (為自然對數(shù)的底數(shù)).

(1)設(shè)曲線處的切線為,若與點(diǎn)的距離為,求的值;

(2)若對于任意實(shí)數(shù) 恒成立,試確定的取值范圍;

(3)當(dāng)時(shí),函數(shù)上是否存在極值?若存在,請求出極值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案