【題目】如圖,在四棱錐中,底面為正方形,平面底面, ,點(diǎn)分別是的中點(diǎn).
(Ⅰ)求證: 平面;
(Ⅱ)求證: 平面;
(Ⅲ)在棱上求作一點(diǎn),使得,并說明理由.
【答案】(Ⅰ)見解析;(Ⅱ)見解析;(Ⅲ)見解析.
【解析】試題分析:(Ⅰ)證明即可得到平面
(Ⅱ)證明和即可證明平面
(Ⅲ)取中點(diǎn),連接, ,過點(diǎn)作,交于點(diǎn). 則點(diǎn)即為所求作的點(diǎn).
試題解析:(Ⅰ)因?yàn)辄c(diǎn), 分別是, 的中點(diǎn),所以
因?yàn)樗倪呅螢檎叫危?/span>
所以
因?yàn)?/span>平面, 平面,
所以平面
(Ⅱ)因?yàn)槠矫?/span>底面, ,
所以平面
因?yàn)?/span>平面,所以
因?yàn)?/span>,點(diǎn)是的中點(diǎn),所以
因?yàn)?/span>, 平面, 平面,
所以平面
(Ⅲ)取中點(diǎn),連接, ,過點(diǎn)作,交于點(diǎn). 則點(diǎn)即為所求作的點(diǎn).
理由:因?yàn)?/span>,點(diǎn)是的中點(diǎn),所以
因?yàn)槠矫?/span>底面,所以平面
所以
因?yàn)?/span>, ,所以平面
因?yàn)?/span>平面,所以
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ﹣mx(m∈R).
(1)當(dāng)m=0時(shí),求函數(shù)f(x)的零點(diǎn)個(gè)數(shù);
(2)當(dāng)m≥0時(shí),求證:函數(shù)f(x)有且只有一個(gè)極值點(diǎn);
(3)當(dāng)b>a>0時(shí),總有 >1成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:如果函數(shù)在定義域內(nèi)給定區(qū)間上存在,滿足 ,則稱函數(shù)是上的“平均值函數(shù)”,是它的均值點(diǎn).
(1)是否是上的“平均值函數(shù)”,如果是請找出它的均值點(diǎn);如果不是,請說明理由;
(2)現(xiàn)有函數(shù)是上的平均值函數(shù),則求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖程序框圖的算法思路源于我國古代數(shù)學(xué)名著《九章算術(shù)》中的某一種算法.執(zhí)行該程序框圖,輸入分別為98,63,則輸出的結(jié)果是( )
A.14
B.18
C.9
D.7
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩條不同直線、,兩個(gè)不同平面、,給出下列命題:
①若垂直于內(nèi)的兩條相交直線,則⊥;
②若∥,則平行于內(nèi)的所有直線;
③若 , 且⊥,則⊥;
④若 ,,則⊥;
⑤若 , 且∥,則∥;
其中正確命題的序號是__________________.(把你認(rèn)為正確命題的序號都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體中,點(diǎn)在上運(yùn)動(dòng),給出下列四個(gè)命題:
①三棱錐的體積不變; ②;
③平面; ④平面平面;
其中正確的命題是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AD、BE、CF分別是△ABC三邊的高,H是垂心,AD的延長線交△ABC的外接圓于點(diǎn)G.
(1)求證:∠CHG=∠ABC;
(2)求證:ABGD=ADHC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解某地高一學(xué)生的體能狀況,某校抽取部分學(xué)生進(jìn)行一分鐘跳繩次數(shù)測試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖),圖中從左到右各小長方形的面積之比為2:4:17:15:9:3,第二小組頻數(shù)為12.
(1)第二小組的頻率是多少?樣本容量是多少?
(2)若次數(shù)在110以上為達(dá)標(biāo),試估計(jì)全體高一學(xué)生的達(dá)標(biāo)率為多少?
(3)通過該統(tǒng)計(jì)圖,可以估計(jì)該地學(xué)生跳繩次數(shù)的眾數(shù)是______,中位數(shù)是_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com