【題目】已知兩條不同直線、,兩個不同平面、,給出下列命題:

①若垂直于內(nèi)的兩條相交直線,則;

②若,則平行于內(nèi)的所有直線;

③若 , ,則;

④若 ,,則;

⑤若 , ,則;

其中正確命題的序號是__________________.(把你認(rèn)為正確命題的序號都填上)

【答案】①④

【解析】

利用線面平行和垂直以及面面平行和垂直的性質(zhì)和判定定理對命題分別進(jìn)行分析,從而得到正確命題

由直線與平面垂直的判定定理知l⊥α,故正確;

l∥α,則lα內(nèi)的直線平行或異面,故不正確;

mα,lβ且lm,則αβ不一定垂直.故不正確;

lβl⊥α,則由平面與平面垂直的判定定理知α⊥β,故正確;

mα,lβ且α∥β,則mlml異面,故不正確.

故答案為:①④.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,BAC=90°,AB=AC=AA1=2,EBC中點.

(Ⅰ)求證:A1B//平面AEC1;

()在棱AA1上存在一點M,滿足,求平面MEC1與平面ABB1A1所成銳二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個對應(yīng)f,不是從集合A到集合B的函數(shù)的是( )

A. A ,B={-6,-3,1},,f (1)=-3,

B. AB={x|x≥-1},f (x)=2x+1;

C. AB={1,2,3},f (x)=2x-1;

D. A=Z,B={-1,1},n為奇數(shù)時,f (n)=-1,n為偶數(shù)時,f (n)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將圓x2+y2=1上每一點的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼?倍,得曲線C.
(1)寫出C的參數(shù)方程;
(2)設(shè)直線l:2x+y﹣2=0與C的交點為P1 , P2 , 以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,求過線段P1P2的中點且與l垂直的直線的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義在上的偶函數(shù),且當(dāng)時,.

(1)已畫出函數(shù)軸左側(cè)的圖像,如圖所示,請補出完整函數(shù)的圖像,并根據(jù)圖像寫出函數(shù)的增區(qū)間;

⑵寫出函數(shù)的解析式和值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為正方形,平面底面, ,點分別是的中點.

)求證: 平面;

)求證: 平面;

)在棱上求作一點,使得,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .若gx)存在2個零點,則a的取值范圍是

A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,從參加環(huán)保知識競賽的學(xué)生中抽出40名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如下:

觀察圖形,回答下列問題:

(1)估計這次環(huán)保知識競賽成績的中位數(shù);

(2)從成績是80分以上(包括80分)的學(xué)生中選兩人,求他們在同一分?jǐn)?shù)段的概率?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果執(zhí)行程序框圖,且輸入n=6,m=4,則輸出的p=(

A.240
B.120
C.720
D.360

查看答案和解析>>

同步練習(xí)冊答案