【題目】為弘揚新時代的中國女排精神.甲、乙兩個女排校隊舉行一場友誼比賽,采用五局三勝制(即某隊先贏三局則獲勝,比賽隨即結(jié)束).若兩隊的競技水平和比賽狀態(tài)相當,且每局比賽相互獨立,則比賽結(jié)束時已經(jīng)進行的比賽局數(shù)的數(shù)學期望是______.

【答案】

【解析】

設(shè)比賽結(jié)束時已經(jīng)進行的比賽局數(shù)為時,表示甲連贏三局或乙連贏三局,比賽結(jié)束.

時,有兩種情況:前三局中甲贏2局輸1局,第四局甲贏;前三局中乙贏2局輸1局,第四局乙贏. 時,有兩種情況:前四局中甲贏2局輸2局,第五局甲贏;前四局中乙贏2局輸2局,第五局乙贏.

解:因為兩隊的競技水平和比賽狀態(tài)相當,所以每場比賽甲贏或乙贏的概率都是0.5

設(shè)比賽結(jié)束時已經(jīng)進行的比賽局數(shù)為,則的可能取值為3,4,5

的分布列為:

3

4

5

故答案為:

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】今年,新型冠狀病毒來勢兇猛,老百姓一時間談毒色變,近來,有關(guān)喝白酒可以預(yù)防病毒的說法一直在民間流傳,更有人拿出醫(yī)字的繁體字醫(yī)進行解讀為:醫(yī)治瘟疫要喝酒,為了調(diào)查喝白酒是否有助于預(yù)防病毒,我們調(diào)查了1000人的喝酒生活習慣與最終是否得病進行了統(tǒng)計,表格如下:

每周喝酒量(兩)

人數(shù)

100

300

450

100

規(guī)定:①每周喝酒量達到4兩的叫常喝酒人,反之叫不常喝酒人;

②每周喝酒量達到8兩的叫有酒癮的人.

1)求值,從每周喝酒量達到6兩的人中按照分層抽樣選出6人,再從這6人中選出2人,求這2人中無有酒癮的人的概率;

2)請通過上述表格中的統(tǒng)計數(shù)據(jù),填寫完下面的列聯(lián)表,并通過計算判斷是否能在犯錯誤的概率不超過0.1的前提下認為是否得病與是否常喝酒有關(guān)?并對民間流傳的說法做出你的判斷.

常喝酒

不常喝酒

合計

得病

不得病

250

650

合計

參考公式:,其中

0.100

0.050

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=lnxsinx,記fx)的導(dǎo)函數(shù)為f'x).

1)若hx)=axf'x)是(0,+∞)上的單調(diào)遞增函數(shù),求實數(shù)a的取值范圍;

2)若x0,2π),試判斷函數(shù)fx)的極值點個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在一旅游區(qū)內(nèi)原有兩條互相垂直且相交于點O的道路l1,l2,一自然景觀的邊界近似為圓形,其半徑約為1千米,景觀的中心Cl1,l2的距離相等,點C到點O的距離約為10千米.現(xiàn)擬新建四條游覽道路方便游客參觀,具體方案:在線段OC上取一點P,新建一條道路OP,并過點P新建兩條與圓C相切的道路PM,PNMN為切點),同時過點P新建一條與OP垂直的道路ABAB分別在l1,l2上).為促進沿途旅游經(jīng)濟,新建道路長度之和越大越好,求新建道路長度之和的最大值.(所有道路寬度忽略不計)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),(.

(Ⅰ)若函數(shù)有且只有一個零點,求實數(shù)的取值范圍;

(Ⅱ)設(shè),若,若函數(shù)對恒成立,求實數(shù)的取值范圍.是自然對數(shù)的底數(shù),

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),若函數(shù)在區(qū)間內(nèi)恰好有奇數(shù)個零點,則實數(shù)k的所有取值之和為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題12分)

A、B是治療同一種疾病的兩種藥,用若干試驗組進行對比試驗。每個試驗組由4只小白鼠組成,其中2只服用A,另2只服用B,然后觀察療效。若在一個試驗組中,服用A有效的小白鼠只數(shù)比服用B有效的多,就稱該試驗組為甲類組。設(shè)每只小白鼠服用A有效的概率為,服用B有效的概率為。

()求一個試驗組為甲類組的概率;

() 觀察3個試驗組,用表示這3個試驗組中甲類組的個數(shù),求的分布列和數(shù)學期望。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面,,且,.

1)證明:.

2)若,試在棱上確定一點,使與平面所成角的正弦值為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)當時,判斷并說明函數(shù)的零點個數(shù).若函數(shù)所有零點均在區(qū)間內(nèi),求的最小值.

查看答案和解析>>

同步練習冊答案